Answers to Problem Set 1

1. a). \[\text{pH} = \text{pK} + \log \left(\frac{\text{Base}}{\text{Acid}} \right) \]; \[9.5 = 10.5 + \log \left(\frac{\text{Base}}{\text{Acid}} \right) \]

\[\log \left(\frac{\text{Base}}{\text{Acid}} \right) = -1 \]; \[\frac{\text{Base}}{\text{Acid}} = \frac{1}{10} \]; \[\text{Base} + \text{Acid} = 1 \]

\[\text{Acid} = 0.91 \]

b). \[\text{Acid} = 0.24 \]

c). The \(\varepsilon \)-NH\(_2\) group has a pK similar to that of aliphatic amines. The \(\alpha \)-NH\(_2\) group is close to the \(\alpha \)-COO\(^-\) which is electron withdrawing and increases the acidity of the \(\alpha \)-NH\(_2\) group. If the carboxyl group is converted to an ester, which has a strong dipole moment and is more electron withdrawing than the COO\(^-\) group, the pK of the \(\alpha \)-NH\(_2\) group decreases to 7.75.

2.

\[\text{pKa}=4.43 \]

\[\text{pKa}=7.7 \]

\[\text{pKa}=9.78 \]

\[\text{pKa}=2.35 \]

a). B

b). B is a dipolar ion.

3.

\[\text{pK}=4.43 \]

\[\text{pK}=7.7 \]

\[\text{pK}=9.78 \]

\[\text{pK}=2.35 \]
4. i) (a) due to the limited number of orientations for making H-bonds as compared to Xe dimers.
 ii) (a) the H-bonds are more favorable when isolated in a nonpolar environment due to an entropic effect.
 iii) (b) since the imidazolium group has a + charge, the + dipole at the N-terminus of a helix will lower its pKa while the - dipole at the C-terminus will raise its pKa.

5. a) 1.5 angstroms
 b) 3.5 - 3.7 angstroms
 c) 2-4 aa
 d) protein is 50 angstroms in diameter, so:
 for α helix, need: $50/1.5 = 33$ aa
 for β strand, need: $50/3.5 = 14$ aa
 for turn 2 aa
 49 aa total

6. The dissociation constant for hemoglobin is: $K_d = (\alpha\beta)^2/(\alpha\beta)^2$
The deoxyhemoglobin dimer is more stable than the oxyhemoglobin dimer by:

 $\Delta(\Delta G^0) = -RT \ln(K_d \text{ oxy})/(K_d \text{ deoxy}) = -RT \ln 6 = -1.35 \times 6 \text{ Kcal/mol}$

 There are six salt linkages; therefore, $\Delta G^0 = -1.35 \text{ Kcal/mol per salt linkage}$.

7. a) Lys, His, Arg and the N-terminus
 b) $\log (Y/1-Y)$
 c) $\log(pO_2)$

 n for both is ~ 3

8. a) 2
 b) 0.5
 c) 60