Problem 1

Indicate for each pair of expressions \((A, B)\) in the table below the relationship between \(A\) and \(B\). Your answer should be in the form of a table with a “yes” or “no” written in each box. For example, if \(A \in O(B)\), then you should put a “yes” in the first box. If the base of a logarithm is not specified, you should assume it is base-2.

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(O)</th>
<th>(o)</th>
<th>(\Omega)</th>
<th>(\omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2 n)</td>
<td>(\log_3 n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log n)</td>
<td>(\sqrt{\log n})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{(\log n)^p})</td>
<td>(n^i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>(n^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log(n!)</td>
<td>(\log(n^n))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 2

For all of the problems below, when asked to give an example, you should give a function mapping positive integers to positive integers. (No cheating with 0’s!)

- Show that if \(f\) is \(o(g)\), then \(f \cdot h\) is \(o(g \cdot h)\) for any positive function \(h\).
- Give a proof or a counterexample: if \(f\) is not \(O(g)\), then \(f\) is \(\Omega(g)\).
- Find (with proof) a function \(f\) such that \(f(2n)\) is \(O(f(n))\).
- Find (with proof) a function \(f\) such that \(f(n)\) is \(o(f(2n))\).
- Show that for all \(\epsilon > 0\), \(\log n\) is \(o(n^{\epsilon})\).
3 Problem 3

QuickSort is a simple sorting algorithm that works as follows on input \(A[0], \ldots, A[n-1] \):

\[
\text{QuickSort}(A):
\]
\[
n = \text{length}(A)
\]
\[
\text{if } n \leq 1:
\]
\[
\quad \text{return } A
\]
\[
\text{else:}
\]
\[
\quad \text{mid} = \text{floor}(n/2)
\]
\[
\quad \text{smaller} \leftarrow \text{number of elements of } A \text{ less than } A[\text{mid}]
\]
\[
\quad \text{larger} \leftarrow \text{number of elements of } A \text{ larger than } A[\text{mid}]
\]

// put all elements of A into either B or C, based on whether they're
// smaller or bigger than A[mid], respectively

\[
B \leftarrow \text{empty array of length smaller}
\]
\[
C \leftarrow \text{empty array of length larger}
\]
\[
\text{writtenB} \leftarrow 0
\]
\[
\text{writtenC} \leftarrow 0
\]
\[
\text{for } i = 1 \text{ to } n:
\]
\[
\quad \text{if } A[i] < A[\text{mid}]:
\]
\[
\quad \quad B[\text{writtenB}] \leftarrow A[i]
\]
\[
\quad \quad \text{writtenB} \leftarrow \text{writtenB} + 1
\]
\[
\quad \text{else if } A[i] > A[\text{mid}]:
\]
\[
\quad \quad C[\text{writtenC}] \leftarrow A[i]
\]
\[
\quad \quad \text{writtenC} \leftarrow \text{writtenC} + 1
\]
\[
B \leftarrow \text{QuickSort}(B)
\]
\[
C \leftarrow \text{QuickSort}(C)
\]

// "+" denotes array concatenation

\[
\text{return the array } B + [A[\text{mid}]] + C
\]

Assume the elements of A are distinct, and that the values smaller and larger are each calculated in time \(\Theta(n) \).

(a) (5 points) Construct an infinite sequence of inputs \(\{A_k\}_{k=1}^{\infty} \) such that (1) \(A_k \) is an array of length \(n_k \) with \(\lim_{k \to \infty} n_k = \infty \), and (2) if \(f(k) \) denotes the running time of QuickSort on \(A_k \), then \(f(k) = \Theta(n_k \log n_k) \).

(b) (5 points) Do exactly the same as part (a), except this time construct a sequence yielding \(f(k) = \Theta(n_k^2) \).

(c) (2 points, **bonus**) Suppose a function \(T = T(n) \) is given satisfying \(T(n) = \Omega(n \log n) \) and \(T(n) = O(n^2) \). Then do the same as in parts (a) and (b), except this time construct a sequence yielding \(f(k) = \Theta(T(n_k)) \).
4 Problem 4

Give asymptotic bounds for $T(n)$ in each of the following recurrences. Hint: You may have to change variables somehow in the last one.

- $T(n) = 2T(n/2) + n^2$.
- $T(n) = 7T(n/3) + n$.
- $T(n) = 16T(n/4) + n^2$.
- $T(n) = T(\sqrt[n]{n}) + 1$.

5 Programming Problem

Solve GOBOSORT on the programming server (https://cs124.seas.harvard.edu).

Hint: Try to first solve the case $m = 1$ (it is helpful to model your solution after MergeSort), then build from that solution for larger m.