Memoization/Dynamic Programming

Today’s lecture discusses memoization, which is a method for speeding up algorithms based on recursion, by using additional memory to remember already-computed answers to subproblems. It is quite similar to dynamic programming (DP), which is the iterative version. (Mantra: memoization is to recursion as dynamic programming is to for loops.) You have already seen memoization/DP when we discussed Bellman-Ford, Floyd-Warshall, and shortest paths on DAGs. You will see several more examples in today’s lecture.

The String reconstruction problem

The greedy approach doesn’t always work, as we have seen. It lacks flexibility; if at some point, it makes a wrong choice, it becomes stuck.

For example, consider the problem of string reconstruction. Suppose that all the blank spaces and punctuation marks inadvertently have been removed from a text file. You would like to reconstruct the file, using a dictionary. (We will assume that all words in the file are standard English.)

For example, the string might begin “thesearethereasons”. A greedy algorithm would spot that the first two words were “the” and “sea”, but then it would run into trouble. We could backtrack; we have found that sea is a mistake, so looking more closely, we might find the first three words “the”, “spear”, and “ether”. Again there is trouble. In general, we might end up spending exponential time traveling down false trails. (In practice, since English text strings are so well behaved, we might be able to make this work– but probably not in other contexts, such as reconstructing DNA sequences!)

This problem has a nice structure, however, that we can take advantage of. The problem can be broken down into entirely similar subproblems. For example, we can ask whether the strings “theseare” and “thereasons” both can be reconstructed with a dictionary. If they can, then we can glue the reconstructions together. Notice, however, that this is not a good problem for divide and conquer. The reason is that we do not know where the right dividing point is. In the worst case, we could have to try every possible break! The recurrence would be

\[T(n) = \sum_{i=1}^{n-1} T(i) + T(n-i). \]

You can check that the solution to this recurrence grows exponentially.
Although divide and conquer directly fails, we still want to make use of the subproblems. The attack we now develop is called *dynamic programming*, and its close relative *memoization*. Memoization is identical to recursion, except where we also on the side store a lookup table. If the input to our recursive function has never been seen before, we compute as normal then store the answer in the lookup table at the end. If we have seen the input before, then it’s in the lookup table and we simply fetch it and retrieve it. The analogy to keep in mind is then “dynamic programming is to memoization as iteration is to recursion”. Whereas the lookup table is built recursively in memoization, in dynamic programming it is built bottom-up.

In order for this approach to be effective, we have to think of subproblems as being ordered by size. In memoization we initially call our recursive function on the original input, then recursively solve “smaller” subproblems until we reach base cases.

For this dictionary problem, think of the string as being an array \(s[1...n]\). Then there is a natural subproblem for each substring \(s[i...j]\). Consider a function \(f(i,j)\) that is *true* if \(s[i...j]\) is the concatenation of words from the dictionary and *false* otherwise. The size of a subproblem is naturally \(d = j - i + 1\). And we have a recursive description of \(f(i,j)\) in terms of smaller subproblems:

\[
f(i,j) = (\text{indict}(s[i...j]) \text{ OR} \prod_{k=i}^{j-1} (f(i,k) \text{ AND } f(k+1,j))).
\]

The above recursive description now naturally leads to a recursive implementation.

```plaintext
Algorithm f(i,j):
    // base case
    1. if indict(s[i...j]): return true
    2. for k = 1, ..., j-1:
        if f(i,k) and f(k+1,j):
            return true
    3. return false

Algorithm CAN_BEPARSED(s[1..n]):
    1. initialize a global variable s equal to the input string s
    2. return f(1,n)
```

If one traces out the recursion tree during computation, starting from \(f(1,n)\), it is apparent that \(f\) is called repeatedly with the same input parameters \(i,j\). The memoized version below now fixes this efficiency issue:
Algorithm \(f(i, j) \):

1. if seen\([i][j]\):
 \[\text{return } D[i][j] \]
2. seen\([i][j]\) ← true
 // base case
3. if indict\([s[i...j]]\):
 \[D[i][j] ← true \]
 \[\text{return } D[i][j] \]
4. for \(k = 1,...,j - 1 \):
 if \(f(i, k) \) and \(f(k + 1, j) \):
 \[D[i][j] ← true \]
 \[\text{return } D[i][j] \]
5. \[D[i][j] ← false \]
 \[\text{return } D[i][j] \]

Algorithm \textsc{memoizedCanBeParsed}(s[1..n]):

1. initialize a global variable \(s \) equal to the input string \(s \)
2. initialize a global doubly indexed array seen[1..n][1..n] with all values false
3. initialize a global doubly indexed array \(D[1..n][1..n] \)
4. return \(f(1, n) \)

What is the running time of \textsc{memoizedCanBeParsed}? If we assume that we have an implementation of indict which always takes time at most \(T \) on inputs of size at most \(n \), then we see that there are at most \(n^2 \) possible \((i, j)\) that could be the input to \(f \). For each of these possible inputs, ignoring all work done in recursive subcalls, we in addition (1) call indict, and (2) execute a for loop over \(k \) which takes at most \(n \) steps. Thus the sum of all work done across all possible inputs \((i, j)\) is at most \(n^2 \cdot (T + n) = O(n^2 T + n^3) \). Note this is an upper bound on the running time, since once we compute some answer \(f(i, j) \) and put it in the lookup table \(D \), any future recursive calls to \(f(i, j) \) return immediately with the answer, doing no additional work.

An easier way to see that the runtime is \(O(n^2 T + n^3) \) is to write a dynamic programming implementation of the solution, which builds \(D \) bottom-up, as below:

Algorithm \textsc{dpcanbeparsed}(s[1..n]):

1. for \(d = 1 \ldots n \):
 for \(i = 1 \ldots n - d + 1 \):
 \[j ← i + d - 1 \]
 if indict\([s[i...j]]\):
 \[D[i][j] ← true \]
3. else:
 for \(k = i \ldots j - 1 \):
 if \(D[i][k] \) and \(D[k+1][j] \):
 \[D[i][j] ← true \]
4. return \(D[1][n] \)

Now it is clearer that this implementation runs in time \(O(n^2 T + n^3) \). Pictorially, we can think of the algorithm as filling in the upper diagonal triangle of a two-dimensional array, starting along the main diagonal and moving up, diagonal by diagonal.
We need to add a bit to actually find the words. Let $F(i, j)$ be the position of end of the first word in $s[i \ldots j]$ when this string is a proper concatenation of dictionary words. Initially all $F(i, j)$ should be set to nil. The value for $F(i, j)$ can be set whenever $D[i][j]$ is set to true. Given the $F(i, j)$, we can reconstruct the words simply by finding the words that make up the string in order.

Let us highlight the aspects of the dynamic programming approach we used. First, we used a recursive description based on subproblems: $D[i][j]$ is true if $D[i][k]$ and $D[k+1][j]$ for some k. Second, we built up a table containing the answers of the problems, in some natural bottom-up order. Third, we used this table to find a way to determine the actual solution. Dynamic programming generally involves these three steps.

Before we go on, we should ask ourselves, can we improve on the above solution? It turns out that we can. The key is to notice that we don’t really care about $D[i][j]$ for all i and j. We just care about $D[1][j]$ – can the string from the start be broken up into a collection of words. So now consider a one dimensional array $g(j)$ that will denote whether $s[1 \ldots j]$ is the concatenation of words from the dictionary. The size of a subproblem is now j. And we have a recursive description of $g(j)$ in terms of smaller subproblems:

$$g(j) = (\text{indict}(s[1 \ldots j]) \text{ OR } \bigwedge_{k=1}^{j-1} (g(k) \text{ AND } \text{indict}(s[k+1 \ldots j]))).$$

As an exercise, rewrite the pseudocode for filling the one-dimensional array using this recurrence. This algorithm runs in time $O(n^2T)$. You may also consider the following optimization: if the largest word in the dictionary is of length $L \ll n$, then you can modify the algorithm to run in time $O(nLT)$.

Edit distance

A problem that arises in biology is to measure the distance between two strings (of DNA). We will examine the problem in English; the ideas are the same. There are many possible meanings for the distance between two strings; here we focus on one natural measure, the *edit distance*. The edit distance measures the number of editing operations it would be necessary to perform to transform the first string into the second. The possible operations are as follows:

- Insert: Insert a character into the first string.
- Delete: Delete a character from the first string.
- Replace: Replace a character from the first string with another character.
Another possibility is to not edit a character, when there is a Match. For example, a transformation from *activate* to *caveat* can be represented by

```
D M R D M I M M D
activate
  caveat
```

The top line represents the operation performed. So the *a* in activate is deleted, and the *t* is replaced. The *e* in caveat is explicitly inserted.

The *edit distance* is the minimal number of edit operations – that is, the number of Inserts, Deletes, or Replaces – necessary to transform one string to the other. Note that Matches do not count. Also, it is possible to have a *weighted edit distance*, if the different edit operations have different costs. Let us assume we have positive costs c_i, c_d, and c_r for insert, delete, and replace.

We will show how compute the edit distance using dynamic programming. Our first step is to define appropriate subproblems. Let us represent our strings by $A[1...n]$ and $B[1...m]$. Suppose we want to consider what we do with the last character of A. To determine that, we need to know how we might have transformed the first $n-1$ characters of A. These $n-1$ characters might have transformed into any number of symbols of B, up to m. Similarly, to compute how we might have transformed the first $n-1$ characters of A into some part of B, it makes sense to consider how we transformed the first $n-2$ characters, and so on.

This suggests the following subproblems: we will let $D(i, j)$ represent the edit distance between $A[1...i]$ and $B[1...j]$. We now need a recursive description of the subproblems in order to use dynamic programming. Here the recurrence is:

$$D(i, j) = \min [D(i - 1, j) + c_d, D(i, j - 1) + c_i, D(i - 1, j - 1) + c_r I(i \neq j)].$$

In the above, $I(i \neq j)$ represents the value 1 if $i \neq j$ and 0 if $i = j$. We obtain the above expression by considering the possible edit operations available. Suppose our last operation is a Delete, so that we deleted the ith character of A to transform $A[1...i]$ to $B[1...j]$. Then we must have transformed $A[1...i-1]$ to $B[1...j]$, and hence the edit distance would be $D(i - 1, j) + c_d$, or the cost of the transformation from $A[1...i-1]$ to $B[1...j]$ plus c_d for the cost of the final Delete. Similarly, if the last operation is an Insert, the cost would be $D(i, j - 1) + c_i$.

The other possibility is that the last operation is a Replace of the ith character of A with the jth character of B, or a Match between these two characters. If there is a Match, then the two characters must be the same, and the cost is $D(i - 1, j - 1)$. If there is a Replace, then the two characters should be different, and the cost is $D(i - 1, j - 1) + c_r$.

We combine these two cases in our formula, using \(D(i - 1, j - 1) + c_i I(i \neq j) \).

Our recurrence takes the minimum of all these possibilities, expressing the fact that we want the best possible choice for the final operation!

It is worth noticing that our recursive description does not work when \(i \) or \(j \) is 0. However, these cases are trivial. We have

\[
D(i, 0) = ic_d,
\]

since the only way to transform the first \(i \) characters of \(A \) into nothing is to delete them all. Similarly,

\[
D(0, j) = jc_i.
\]

Again, it is helpful to think of the computation of the \(D(i, j) \) as filling up a two-dimensional array. Here, we begin with the first column and first row filled. We can then fill up the rest of the array in various ways: row by row, column by column, or diagonal by diagonal!

Besides computing the distance, we may want to compute the actual transformation. To do this, when we fill the array, we may also picture filling the array with pointers. For example, if the minimal distance for \(D(i, j) \) was obtained by a final Delete operation, then the cell \((i, j)\) in the table should have a pointer to \((i - 1, j)\). Note that a cell can have multiple pointers, if the minimum distance could have been achieved in multiple ways. Now any path back from \((n, m)\) to \((0, 0)\) corresponds to a sequence of operations that yields the minimum distance \(D(n, m) \), so the transformation can be found by following pointers.

The total computation time and space required for this algorithm is \(O(nm) \).

Matrix chain multiplication

In this problem we would like to multiply \(k \) matrices \(A_1 \times A_2 \times \ldots \times A_k \). We assume the matrix \(A_i \) is of dimension \(n_i \times n_{i+1} \). Since matrix multiplication is associative, we can choose the order of multiplication. For example, \(A_1 \times A_2 \times A_3 = (A_1 \times A_2) \times A_3 = A_1 \times (A_2 \times A_3) \). The straightforward way to multiply a \(p \times q \) matrix by a \(q \times r \) matrix takes \(\Theta(pqr) \) time (nested for loops), and the total time to multiply the \(k \) matrices could depend on the order of multiplication. For example consider the case \(k = 3 \) and \(n_1 = 2, n_2 = 3, n_3 = 4, n_4 = 5 \). Then multiplying \(A_1 \times A_2 \) first takes time \(2 \cdot 3 \cdot 4 = 24 \). Then multiplying the result times \(A_3 \) takes time \(2 \cdot 4 \cdot 5 = 40 \), so the total time is \(24 + 40 = 64 \). Meanwhile, multiplying \(A_2 \times A_3 \) first takes time \(3 \cdot 4 \cdot 5 = 60 \). Then multiplying \(A_1 \) times the result takes time \(2 \cdot 3 \cdot 5 = 30 \). Thus the total time is 90. Thus, \((A_1 \times A_2) \times A_3\) is more efficient in this case.
How can we figure out, given \(k \) and \(n_1, \ldots, n_{k+1} \) as input, the optimal parenthesization to minimize the total cost of performing all multiplications? You guessed it: recursion and memoization!

Define \(f(i, j) \) as the minimum cost to multiply \(A_i \times A_{i+1} \times \ldots \times A_j \) so that we actually care to compute \(f(1, k+1) \). Then we have the recurrence

\[
f(i, j) = \begin{cases}
0, & \text{if } i = j \\
\min_{i \leq r < j} \left[f(i, r) + f(r+1, j) + n_i n_{r+1} n_{j+1} \right], & \text{otherwise}
\end{cases}
\]

The base case is when the product consists of a single matrix \((i = j)\), so no work need be done. Otherwise, if \(j > i \), then in the optimal solution one of the \(j-i \) products, call it the \(r \)th product, is the last product to be computed. We don’t know which \(r \) is optimal, so we simply try all possible choices of \(r \). That is, we try performing our multiplication as \((A_i \times A_{i+1} \times \ldots \times A_r) \times (A_{r+1} \times A_{r+2} \times \ldots \times A_j)\). Then we need to figure out the optimal way to multiply the matrices between \(A_i \) and \(A_r \), add that to the optimal way to multiply the matrices between \(A_{r+1} \) and \(A_j \), then sum these with the cost \(n_i n_{r+1} n_{j+1} \) of performing the final product.

With memoization, the space is \(\Theta(k^2) \) and the time is \(\Theta(k^3) \).

Traveling salesman problem

Suppose that you are given \(n \) cities and the distances \(d_{ij} \) between them. The traveling salesman problem (TSP) is to find the shortest tour that takes you from your home city to all the other cities and back again. As there are \((n-1)! \) possible paths, this can be done in \(O(n!) \) time by trying all possible paths. Of course this is not very efficient.

Since TSP is NP-complete (which is a concept we will discuss later in the course), it is a very hard problem to find a polynomial-time algorithm, if at all even possible. But dynamic programming/memoization provide a much better algorithm than trying all the paths.

The key is, as usual, to define the appropriate recursion. Before delving into that, note that first we can spend \(O(n^3) \) time running Floyd-Warshall to compute values \(D_{ij} \) such that \(D_{ij} \) is the length of the shortest path from \(i \) to \(j \).

Now we define the recursion. We start in our home city, which we’ll call city 1. Let \([n]\) denote \(\{1, \ldots, n\} \). For a subset \(S \subset [n] \) and index \(u \in \{1, \ldots, n\} \), define \(f(u, S) \) to be the length of the shortest path which starts at \(u \), visits every city in \(S \), then returns to city 1. Then the quantity we would like to compute to obtain our answer for TSP is \(f(1, \{2, \ldots, n\}) \).

Now we write the recursion. Our base case is when \(S = \emptyset \), in which case we simply pay the distance to go from \(u \) to 1. Otherwise, we can recursively try all possibilities for which \(v \in S \) to visit next then take which is best. This yields the following recursion.
\[f(u, S) = \begin{cases} D_{u,1}, & S = \emptyset \\ \min_{v \in S} D_{u,v} + f(v, S \setminus \{v\}), & \text{otherwise} \end{cases} \]

Note there are at most \(n2^n \) possible inputs to \(f \), and for each one we spend \(n \) time. Thus with memoization, the memory usage is \(O(n2^n) \), and the running time is \(O(n^22^n) \).