Problem 4 is worth 40% of this problem set, and problems 1-3 constitute the remaining 60%.

For each problem where you are asked to give an algorithm, more points are given for asymptotically faster algorithms. In judging the number of points to award a correct solution, we only consider the running time in asymptotic notation, i.e. a writeup of an algorithm taking $1000n^2$ steps versus one taking $.01n^2$ steps would receive the same number of points — both would be simply treated as $\Theta(n^2)$-time solutions.

Problem 1

Given n points in the plane and a parameter $0 < p < 1$, we call a line “p-heavy” if it contains at least pn of the input points.

(a) (3 points) Show if $n \geq 2/p^2$, then the number of distinct p-heavy lines is at most $2/p$.

(b) (7 points) Based on (a), devise a divide-and-conquer algorithm to report all p-heavy lines. Full credit is given for solutions with running time $O(C_p n \log n)$ for some constant C_p that only depends on p (optimizing C_p is not necessary to receive full credit). **Hint:** consider treating inputs with fewer than n_p points as a base case, where n_p depends only on p.

Problem 2

We construct an infinite sequence of arrays A_1, A_2, A_3, \ldots in the following recursive fashion. First, we specify that $A_1 = [1]$. For $k > 1$, we recursively define A_k to be two copies of A_{k-1} put together, with the number k inserted between the two lists.

To illustrate the above algorithm:

$$A_1 = [1]$$
$$A_2 = [1, 2, 1]$$
$$A_3 = [1, 2, 1, 3, 1, 2, 1]$$
$$A_4 = [1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]$$
and so on.

Devise an efficient algorithm that accepts some \(k \) and two intervals \([a, b]\) and \([c, d]\), and determines the length of the longest subarray contained in both the arrays \(A_k[a:b] \) and \(A_k[c:d] \). An array \(C \) is a subarray of an array \(B \) if there exist \(i \) and \(j \) such that \(C = B[i:j] \). As always, you must prove the algorithm’s correctness and analyze its runtime.

Problem 3

Recall the following text search problem from class. There is an alphabet \(\Sigma \) and two strings \(P \in \Sigma^m, T \in \Sigma^n, n \geq m \) (i.e. strings of length \(m, n \), respectively, made up of characters in \(\Sigma \)). We would like to output a list of all indices \(i \) such that \(T[i, i+1, \ldots, i+m-1] = P \), i.e. \(t_{i+j-1} = p_j \) for \(j = 1, \ldots, m \). In class, when \(\Sigma = \{0, 1\} \) we showed how to use the FFT to solve this problem in \(O(n \log n) \) time (assuming a computer supporting infinite precision complex arithmetic). Making the same precision assumptions:

(a) (2 points) Improve this time to \(O(n \log m) \) for \(\Sigma = \{0, 1\} \).

(b) (2 points) Deal with the case when \(P \) (but not \(T \)) has “don’t care” symbols \(*\). A * symbol can match either a 0 or a 1. Again you should assume \(\Sigma = \{0, 1\} \).

(c) (2 points) Show how to deal with the case \(|\Sigma| > 2 \), without don’t care symbols. You can assume \(\Sigma = \{1, 2, \ldots, |\Sigma|\} \). For this part, full points will be given to solutions with runtime \(O(|\Sigma|n \log(|\Sigma|m)) \).

(d) (2 points) Give a solution for \(|\Sigma| > 2 \) with don’t care symbols (in both \(P \) and \(T \)), which can match any character in \(\Sigma = \{1, 2, \ldots, |\Sigma|\} \). Again, full points will be given to solutions with runtime \(O(|\Sigma|n \log(|\Sigma|m)) \).

(e) (2 points) Devise a new algorithm improving the runtime from (d) to \(O(n \log m) \), i.e. with no dependence on \(|\Sigma| \). Note that an \(O(n \log m) \) solution here naturally implies you don’t have to separately do parts (a) through (d), since the problem solved here is most general. Hint: Characters \(c, c' \) are unequal iff \((c-c')^2 > 0\).

Programming Problem

Solve DIVIDENDS on the programming server (https://cs124.seas.harvard.edu).

Extra Credit Programming Problem

Solve DIVIDENDSCHARD on the programming server (https://cs124.seas.harvard.edu). No collaboration of any form is allowed on this extra credit problem; you also will not receive any help from TFs (though you may ask TFs for clarifications on the problem statement).