1 DP Overview

1.1 Ideas

Dynamic programming is an extremely useful problem-solving technique that allows us to solve larger problems by breaking them into sub-problems and combining them together. We use a dictionary or look-up table to guarantee that we only solve each sub-problem once.

There are 2 ways that we usually implement DP algorithms:

- **Recursion with memoization:** Start with a recursive function \(f \). Every time we call \(f \) on an input, first check in a dictionary to see if \(f \) on that input has been calculated before. If so, return the answer immediately. If not, run \(f \) on this input normally and store the output in the dictionary.

- **Bottom-up dynamic programming:** We start with a multi-dimensional array \(X \). We start filling in the entries of \(X \) one at a time depending on the recurrence that \(X \) satisfies. Eventually, we will fill in \(X \) on our desired input and then we stop.

Theoretically, the two strategies achieve the same complexity bounds, although bottom-up DP can be space saving in some situations. For this section, we will use recursive function \(f \) and lookup table \(X \) interchangeably.

1.2 Solution Organization

A good solution to a dynamic programming part will consist of the following 3 parts.

- **Definition:** Define your recursive function or look-up table in words. Explain what parameters it has, what they represent, what the function itself represents, and what inputs are needed to get the final answer.

 - Good. For the string reconstruction problem, let \(D[i, j] \) be the boolean value indicating whether the substring of \(s \) from the \(i \)th character to the \(j \)th character has a concatenation of strings from the dictionary. \(D[1, n] \) would give us our final answer.

 - Bad. Let \(D[i, j] \) be whether a substring can be broken into words of the dictionary. (How do \(i \) and \(j \) relate to this substring? Is \(D[i, j] \) a list of dictionary words or just a boolean value?)

- **Recursion:** Give both a verbal and mathematical description of the recursion used, including the base cases. A piecewise function is usually a good way to do this. Remember, you must include an English explanation of why your recursion works and is correct.

- **Analysis:** Include both a runtime analysis and a space analysis. If specific data structures are necessary to improve computation speed, you should explicitly state them. If multiple solutions exist, choose the most time-efficient, and then choose the most space-efficient.
– **Runtime.** The runtime of a DP algorithm can be calculated by:

\[
\text{Number of possible inputs} \cdot \text{Time to combine recursive calls}
\]

For the string reconstruction problem, there are \(n^2\) possible inputs, and each takes \(O(n)\) time to take the boolean OR of up to \(n\) elements from the recursive calls.

– **Space.** The space complexity of a DP algorithm is always \(O(\text{number of possible inputs})\). However, in some cases, it is possible to do better if you do not need to store all your recursive calls’ answers to build up your solution. For example, in Fibonacci, you only need to store the last 2 fibonacci numbers, even though your function has \(n\) possible inputs, so the space can be made \(O(1)\) instead of \(O(n)\).

1.3 How to Approach Problems

A common theme in dynamic programming is the idea of *exhaustion*. I know I'll find the optimal answer because I'm taking the best solution out of all possible ways to get a solution.

(a) **String reconstruction:** If it is possible to break this string into dictionary words, then then the first of these words must end somewhere. Check all possible places where the first word could end, and recursively check if the remaining letters can be broken into strings.

(b) **Edit distance:** If last characters of two string are different, then that difference must have come about through an *insert*, *delete* or *replace*. Check all three of those possibilities and recursive appropriately depending on which operation took place.

(c) **Shortest paths:** The shortest path from \(u\) to \(v\) must have passed through one of the nodes \(w\) with the edge \(w \rightarrow v\). Find the best previous node \(w\) in this shortest path by taking the minimum over all such possibilities of going from \(u\) to \(w\) in the shortest way possible and then finally \(w \rightarrow v\).

2 Randomized Algorithms Overview

2.1 Ideas

In contrast to the deterministic algorithms we’ve seen thus far, randomized algorithms rely on random decision-making ("coin tosses"). Note that the algorithms’ input is *not* random and is always assumed to be worst-case.

There are two main types of randomized algorithms:

- **Las Vegas:** Runtime is a random variable, but correctness is certain. We aim to 1. bound maximum expected runtime or 2. prove that runtime is small with high probability.

- **Monte Carlo:** Correctness is random, but the runtime is fixed. We aim to 1. find a low runtime and 2. bound the maximum probability that the output is incorrect.

2.2 Review Examples

(a) **Frievalds’:** Given three \(n \times n\) matrices \(A, B, C\), we want to check whether \(C = A \times B\). We do so by choosing \(k\) random binary vectors \(x^1, x^2, ..., x^k\) and outputting true if and only if \(Cx^i = ABx^i\) for all \(i\). This is a Monte Carlo algorithm with deterministic runtime \(\Theta(kn^2)\) and probability at most \((\frac{1}{2})^k\) of failure.
(b) **QuickSort:** We want to sort an array A of n elements. We recursively choose a random pivot element, splitting the remaining elements into two subarrays depending on whether they are smaller or larger than the pivot, and recursively sort each subarray. This is a Las Vegas algorithm with expected runtime $\Theta(n \log n)$.

(c) **QuickSelect:** We want to choose the kth smallest element in an array A of n elements, where $1 \leq k \leq n$. Similarly to QuickSort, we choose a random pivot element, split the remaining elements into two subarrays depending on whether they are smaller or larger than the pivot, and search the array containing the kth smallest element. This is a Las Vegas algorithm with expected runtime $O(n)$.
3 Exercises

3.1 Robots on a Grid

Exercise 1. Imagine a robot sitting on the lower-left corner of an $M \times N$ grid. The robot can only move in two directions at each step: right or up.

(a) Design an algorithm to compute the number of possible paths for the robot to get to the top-right corner.

(b) Can you derive a mathematical formula to directly find the number of possible paths?

(c) Imagine that certain squares on the grid are occupied by some obstacles (probably your fellow robots, but they don’t move). How should you modify your algorithm to find the number of possible paths to get the top left corner without going through any of those occupied squares?
3.2 Greedy.c Again

Exercise 2. In the last section, we explored the greedy algorithm for making change and saw that there exists coin denominations such that the greedy algorithm is not correct. Given a general monetary system with \(M \) different coins of value \(\{c_1, c_2, \ldots, c_M\} \), devise an algorithm that returns the minimum number of coins needed to make change for \(N \) cents. How would you modify your algorithm to return the actual collection of coins?

3.3 Palindrome

Exercise 3. A palindrome is a word (or a sequence of numbers) that can be read the same say in either direction, for example “abaccaba” is a palindrome. Design an algorithm to compute the minimum number of characters you need to remove from a given string to get a palindrome. For example, you need to remove at least 2 characters of the string “abbaccdaba” to get the palindrome “abaccaba”.
3.4 Boolean Parenthesization

Exercise 4. The boolean Parenthesization problem asks us to count the number of ways to fully parenthesize a boolean expression so that it evaluates to true. Let $T, F, \land, \lor, \oplus$ represent true, false, and, or, and xor respectively. For example, given the expression $T \oplus F \lor F$, there are 2 ways to make it evaluate to true, namely: $(T \oplus (F \lor F))$ and $((T \oplus F) \lor F)$.

3.5 Probability Problems

Exercise 5. Suppose Alex’s closet contains n tech shirts. Each day, Alex randomly chooses one of the shirts to wear, and then puts it back in the closet without laundering. What is the expected number of days until Alex has worn all of the shirts at least once?

Exercise 6. This weekend, you decide to go to a casino and gamble. You start with k dollars, and you decide that if you ever have $n \geq k$ dollars, you will take your winnings and go home. Assume that at each step you either win 1 or lose 1 (with equal probability).

(a) What is the probability that you lose all your money?

(b) How many steps are expected to occur before you either run out of money or earn n and decide to leave?