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Abstract

Monte Carlo integration is a powerful technique for the evaluation
of difficult integrals. Applicationsin rendering include distribution
ray tracing, Monte Carlo path tracing, and form-factor computation
for radiosity methods. In these cases variance can often be signifi-
cantly reduced by drawing samplesfrom several distributions, each
designedto samplewell some difficult aspect of theintegrand. Nor-
mally this is done by explicitly partitioning the integration domain
into regions that are sampled differently. We present a power-
ful aternative for constructing robust Monte Carlo estimators, by
combining samplesfrom several distributions in away that is prov-
ably good. These estimators are unbiased, and can reduce variance
significantly at little additional cost. We present experiments and
measurementsfrom several areasinrendering: calculation of glossy
highlights from area light sources, the “final gather” pass of some
radiosity algorithms, and direct solution of the rendering equation
using bidirectional path tracing.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; 1.3.3 [Computer Graphics]: Picture/lmage
Generation; G.1.9 [Numerical Analysis]: Integral Equations—
Fredholm equations.

Additional Keywords: Monte Carlo, variance reduction, render-
ing, distribution ray tracing, global illumination, lighting simulation.

1 Introduction

Technically, rendering is all about clever ways to approximate in-
tegrals. For example, the pixel values in an “ideal” image usu-
ally involve integration over the image plane, lens position, and so
on. Furthermore, the quality of a rendering algorithm is frequently
measured by the accuracy and efficiency with which these integrals
are approximated. In this paper, we focus on Monte Carlo (MC)
methods for evaluating such integrals. These methods use random
sampling to simplify the integration problem, by expressing the
integral as the expected value of a random variable. The major
drawback of MC integration is that the resulting estimates can have
high variance; this is perceived as noise in arendered image.
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Unfortunately, thefunctionsthat we needto integratein computer
graphics are often ill-behaved. They are amost always discontin-
uous, and often have singularities or very large values over small
portions of their domain. Because of this, we often need more than
one sampling technique to estimate an integral with low variance.
Normally thisisaccomplished by explicitly partitioning the domain
of integration into several regions, and designing a sampling tech-
nique for each region. For example, asimple distribution ray tracer
may use one technique to evaluate direct lighting, another to esti-
mate glossy reflections, and a third for ideal specular contributions.

In this paper, we explorethe general problem of constructing low-
variance estimators by combining samples from several techniques.
We do not construct new sampling methods—all the samples we
use come from one of the given distributions. Instead, we look for
better ways to combine the samples; in particular, strategies that
compute weighted combinations. We show that there is a large
class of unbiased estimators of this type, parameterized by a set
of weighting functions. We then seek weighting functions within
this class that minimize variance. In a sense, we are asking the
inverse problem: given several sampling techniques, how should
the domain be partitioned among them? (Or more generally, how
should the samples be weighted?)

A good solution to this problem turns out to be surprisingly
simple. We show how to combine samplesfrom several distributions
in away that is provably good, both theoretically and practically.
This allows us to construct MC estimators that have low variance
for a broad class of integrands—we call such estimators robust.
The significance of our methodsis not that we can take several bad
sampling techniquesand concoct a good one out of them, but rather
that we can take several potentially good techniques and combine
them so that the strengths of each are preserved.

In Sec.2, we review the fundamentals of MC integration for
rendering, and give an example to motivate our variance reduction
framework. Sec. 3 explains our ideas on combining samples from
several distributions, and givestheoretical justification under several
models (proofs can be found in App.A). In Sec.4 we present
computed imagesand numerical resultsfor several application areas:
glossy highlights from area light sources, the “final gather” pass
of some radiosity algorithms, and direct solution of the rendering
equation using bidirectional path tracing. Finally, Sec.5 discusses
of anumber of tradeoffs and open issuesrelated to our work.

2 Monte Carlo rendering

2.1 Integrals for radiance

We have chosen two basic problems in rendering to illustrate our
techniques: evaluation of the radiance leaving a surface given a
description of the incoming illumination (asin distribution ray trac-
ing or some “final gather” approaches), and direct solution of the
rendering equation[5]. For further details and background see[3].

Given the incident radiance distribution i (x', &) at a point x’,



Figure 1: Geometry for the reflectance equation.

thereflectedradiance L. (x', &1 ) isgiven by the reflectanceequation

Le(x, &) :/ Fo(X, G = @0 Li(, &) |cos(8) | do(@) (D)
S2

where f; is the bidirectional reflectance distribution function
(BRDF), S is the set of all unit direction vectors, ¢ is the usual
solid angle measure, and ¢/ is the angle between &/ and the surface
normal at x’ (seeFig. 1). Weallow f; to model transmission aswell
(in this case f; isthe bidirectional scattering distribution function).

Sometimesit is preferable to express the refl ectance equation as
an integral over the domain M of scene surfaces (e.g. for direct
lighting calculations). Thisform is given by

Lo (x—x"") :/ Fr(xex'ox")G(x—x"V Li(x—x") dA(x) (2)
M

cos(f:) cos(8])

where
llx —x'||?

G(x=x") = V(xex') -
Here A is the usua measure of surface area, ¢, and ¢ measure
the angle between x — x’ and the surface normals at x and x’
respectively, while V(x«—x') is 1if x and x’ are mutually visible
and O otherwise. The term G(x « x') measures the differential
throughput of a beam[3] from x to x’.

Often the incident radiance distribution is unknown, and we must
solve for it. This leads to the global illumination problem: given
an emitted radiance distribution L., find the equilibrium radiance
distribution L satisfying

L(x—x") Le(xx")

©)
—1—/fr(x<—>x'<—>x”)G(x<—>x')L(x—>x')dA(x).
M

Thisis known asthe three-point rendering or light transport equa-
tion[5]. Equation (3) can be written concisely in operator form as
L = L.+ 7L, where T is the light transport operator. Under
weak assumptions, the solution is given formally by the Neumann

series .
L=> TL..
=0

Thissaysthat the equilibrium radiance I isthe sum of emitted light,
plus light that bounces once, twice, etc.

Our goal is to compute afinite set of measurementsthat approx-
imately represent .. Each measurement /,, is expressed asan inner
product or “weighted average” of the radiance distribution 7, as
modeled by the measurement equation:

4)

I, = (Wy, L) = | Wp(x—x")L(x—x")G(x=x") dA(x) dA(x")

MxM
©)

where W, (x —x') is the weighting function corresponding to a
particular measurement /..

For example, the value of each pixel p in an image can be ex-
pressed in the form (5), using a weighting function W, that is
non-zero on the set of rays mapped to pixel p by the virtual lens.
W, can model arbitrary lens systems used to form the image, as
well asany linear filters used for anti-aliasing.
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2.2 Monte Carlo integration

We review the basic principle of MC integration, and establish some
notation for the following sections. Our goal isto estimate

F= / Je) du(e)

where f : & — R and i is ameasure function.

We define a sampling technique as an algorithm for choosing
random points in the domain 2. Let p(z) du(x) be the probability
distribution of the points generated. The idea of MC integration is
to generateasample X, and thenuse f(X')/p(X) asan estimate of
F. Aslongasthesamplevalue f (X ) /p(X) isfinitefor all samples
X, itis easy to show that this estimateis unbiased:

f(x )] /

E —_— =
[p(X ) a
where E[Z] denotes the expected value of Z. In practice, we esti-

mate F by taking several samples X, . . ., X, distributed according
to p, and computing n (X))
1 (X,

F = -~ E_l .

Koy uto) = [ sta)antn) =7 @

p

p(Xs) @

MC integration has oneinherent drawback, which manifestsitself
as a tradeoff between variance and running time. Letting 7' bethe
samplevalue f(X)/p(X), thevarianceof F' is

VIF] = B[F®] - BIFJ = / %du(m) g

If we take n independent samples according to (7), variance is
reduced by afactor of n, while running time isincreased by afactor
of n. Thistradeoff is summarized by theefficiency[1, 6] of aMonte
Carlo estimator,

1
VIF]-T[F]

whereT[F'] isthetimerequired to takeasamplefrom F'. Thehigher
the efficiency, the less time required to achieve a given variance.
The design of efficient estimators, often simply called variance
reduction, is afundamental goal of MC research.

Noticethat thevariancein (8) is strongly affected by the sampling
distribution p—e.g. if p is proportional to f (assuming f > 0), the
variance V[ F] is zero. Unfortunately the normalizationp = f/F
requires knowledge of F, so this is not practical. However, by
choosing a distribution p whose shapeis similar to f, variance can
bereduced. Thisideais known asimportance sampling[6].

On the other hand, suppose that we sample f inadequately in
some region U where its value is large (i.e. p < f/F). By (8)
we see that samples from U can make a large contribution to the
variance, even if U isrelatively small. Thiseffect is a major cause
of noisein Monte Carlo images. Our primary goal isto show how
this problem may be avoided, by combining samples from several
distributions designed to sample well each significant region of f.

e[F] =

2.3 An example: glossy highlights

Consider how a distribution ray tracer might render the highlight
produced by an area light source S on a nearby glossy surface (see
Fig. 2). Givenaviewing ray that strikesthe glossy surface, thereare
two obvious strategies for MC evaluation of the reflected radiance,
corresponding to forms (1) and (2) of the reflectance equation.
With area sampling, we randomly samplepointson S to evaluate
the integral (2). To compute the estimate (7), we must know the
distribution p(x) d A(x) of the samples—for example, they may be
chosenuniformly on S with respect to surfaceareaor emitted power.
Since there is considerable freedom in choosing p, area sampling



(c) A combination of samplesfrom (a) and (b).

isreally a family of techniques. The glossy highlightsin Fig. 2(a)
were computed with an area sampling strategy.

Withdirectional sampling, we estimatetheintegral (1) by random
sampling of the incident direction /. Evaluation of L; requires
casting aray; only the rays that strike S contribute to the highlight
calculation. Typically the distribution p(&{) do (@) is chosen to
be proportiona to f;(x,&{ ;) or to fr(x', & — &})| cos(8])].
Fig. 2(b) was computed with adirectional sampling strategy.

One of these strategies can have a much lower variance than the
other (see Fig.2). For example, if the light source is very small,
we are unlikely to hit it with rays chosen by randomly sampling
the BRDF. On the other hand, if the BRDF is nearly specular, ran-
domly chosenpoints onthe light sourcewill probably not contribute
significantly to the radiance refl ected along the viewing ray.

In both these cases, noiseis caused by inadequatesampling where
the integrand is large. To understand this, notice that the integrand
in the reflectance equation (2) is the product of various unrelated
factors—the BRDF, the emitted radiance 7., and several geometric
quantities. However, the area sampling distribution usedin Fig. 2(a)
does not take into account the BRDF for example, while the direc-
tional samplingin Fig. 2(b) doesnot depend on the emitted radiance.
When an unconsidered factor is dominant (e.g. asmall bright light,
or a shiny surface), that sampling technique will do poorly.

It isimportant to realize that both strategies are importance sam-
pling techniques aimed at generating sample points on the same
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(b) Sampling the BRDF

Figure 2: Sampling of glossy highlights from area light sources
(Sec.2.3,4.1). Therearefour spherical light sourcesof varying radii
and color, plusaspotlight overhead. All spherical light sourcesemit
the sametotal power. There are also four shiny rectangular plates of
varying surfaceroughness, each onetilted so that we see thereflected
light sources.

Given aviewing ray that strikesa glossy surface, images (a), (b),
(c) use different techniquesfor the highlight calculation. All images
are 500 by 450 pixels.

(@) A sample direction &/ is chosen uniformly (with respect to
solid angle) within the cone of directions subtended by each light
source, using n; =4 samples per pixel.

(b) @/ is chosen with probability proportional to the BRDF
Jr (%!, 8/ —d]) do (D), using ny = 4 samples per pixel.

(c) A weighted combination of the samples from (a) and (b) is
computed, using the power heuristic with 5 =2.

The glossy BRDF is asymmetric, energy-conserving variation of
the Phong model. The Phong exponentisn = 1/r — 1, wherer is
a surface roughness parameter, 0 < r < 1. The glossy surfacesalso
have a small diffuse component. Similar results could be obtained
with other glossy BRDF's.

domain (in this case, the light source S). Area sampling choosesa
pointx € S directly, while directional sampling choosesx by cast-
ing aray in the chosendirection&!. Given adirectional distribution
p(&]) do(&]), the corresponding area distribution p(x) d A(x) is

do (&)

e =@ =

= (3! Rt WA
p(x) = p(&) T xF )
(seeFig. 1). Thisletsuscomputethe probability densitiesassigned

by areaand directional methodsto the same point x.

2.4 Our framework for variance reduction

When choosing a Monte Carlo sampling technique, we rarely know
exactly what the integrand is. Instead, we have some model for
the integrand, defined by a set of parameters (e.g. the BRDF, the
scene geometry, etc). Given several sampling techniquesto choose
from, the variance of each one can change dramatically as these
parametersvary.

Our main goal is to show how Monte Carlo integration can be
mademorerobust, by constructing estimatorsthat have low variance
for a broad class of integrands. To achieve this, we must avoid

1 0ne could argue that V (x«+x’) should appear in (9). Butif V(x«
x') =0, theintegrand (2) is also zero, which makes p(x) irrelevant.



insufficient sampling of each candidateintegrand f where its value
islarge. Our approach to this problem has three steps.

First, we design a set of importance sampling distributions
p1,...,pn. FOr eachregion where f has the potential to be large,
wetry to construct asampling distribution that approximates f well
over that portion of the domain. An excellent source of these distri-
butions is the situation in the example above, where f is a product
of several unrelated functions, and each p; is proportional to the
product of a subset of these.

Next, we determine how many samplesto take from each p;. We
assumethis is fixed in advance, based on knowledge of f and p;.

Finally, theintegral is estimated as aweighted combination of all
the sample values. The main subject of this paper is how to do this,
such that the estimate is unbiased and has low variance.

3 Combining sampling techniques

We are given an integrand f : © — R, and several impor-
tance sampling distributions pi1, ..., p,. Our goa is to estimate
fﬂ f(z)dp(z). We assumethat only two operations are available:
we can take a sample from any of the distributions p;, and we can
evaluate f(x), and p;(x) for any = € Q. Each sample s assumed
to be independent, i.e. we generate new random bits to control its
selection.

As mentioned above, we must also decide how many samplesto
take from each p;. We define ¢; asthe relative number of samples
taken from p,, where Zl ¢; = 1. In this paper, we assume that
the ¢; are fixed in advance, i.e. before any samples are taken. The
choice of the ¢; is an interesting problem that we discuss further in
Sec.5.2.

The key ideas in this section are simple. First, notice that by
drawing afraction ¢; of the samplesfrom each p;, theresulting group
of samples has the distribution p(z) = . cipi(x). We propose
that the natural way to combine importance sampling techniquesis
to consider this combined sample distribution when computing the
unbiased estimate f(X)/p(X).

Second, we show that this method of combining samplesis prov-
ably good (compared to partitioning, simpleweighted combinations,
etc). To justify this claim, we explore a much larger class of un-
biased combination strategies, parameterized by a set of weighting
functions. We then look for weighting functions that minimize the
variance of the combined estimator, and show that the combination
strategy aboveis closeto optimal. This gives us confidencethat our
methods compare favorably with other possible techniques.

Third, we use our framework of unbiased estimators to reduce
variance further in an important special case. Specifically, it is
commonin practice that for the particular integrand f weare given,
one of the given sampling distributions is far superior to the rest
(e.g. asmall bright light or shiny surfacein Fig. 2). We study two
families of weighting functions that perform significantly better in
this situation, while retaining provably good behavior in general.

3.1 The combined sample distribution

Suppose that n; = ¢; N independent samples X; ; are taken from
distribution p;, for atotal of N samples. As a group, the samples
have the distribution

plz) = Z cipi(z) .

More precisely, p(z) is the distribution of a random variable X
whichis equal to each X; ; with probability 1/N. We call this the
combined sampledistribution. From this point of view, the standard

estimator (7) gives n n F(X0)
_ 1 3
PN L LR,
= 1=

(10)
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Aswe will show, thisis a provably good way to combine samples
from several distributions. Within the framework described below,
this strategy is called the balance heuristic (Sec. 3.3).

3.2 The multi-sample model

In this sectionwe consider unbiased estimatorsthat allow samplesto
beweighted differently, depending on which underlying distribution
p: they were chosenfrom. Each estimator is parameterized by a set
of weighting functions ws, . . ., w,,, where w;(z) gives the weight
associatedwith asample z drawn from p;. The combined estimator
isgiven by n n;
1 f(Xiy)
F= — wi( X ;) —== 11
z;m;;( DR (11)
where the X;; are independent samples from distribution p;,
as before. For this estimator to be unbiased, we require that
>, wi(z) = 1forall z, sincethis gives

Ewy=zj%mlﬁg%§ﬂmwwmm)54ﬂ@dmm.

Think of thisasaweighted sum of theestimators f (X ;)/p: (X ;).
Theweightsare allowed to vary with position, but must alwayssum
to one. For example, if at every point = all but one of the w; are
zero, weget asimple partitioning of the domaininto » regions. This
represents a heuristic such as dividing the visible hemisphere into
light source regions and non-light-source regions, which are then
sampled using different methods.

3.3 The balance heuristic

We now have a large parameter space over which to optimize (the
spaceof allowableweighting functionsw;). Our goal isto minimize
the variance of F' by choosing the w; appropriately. Consider the
weighting functions cipi(z)

Wy - < -
Z 5 CiPj (z)
These «; have the unique property that the sample value
{;i(z) f(z)}/{nip:(¢)} from (11) doesnot depend on ;. Because
the sample value at a particular z isthe samefor all underlying dis-
tributions, we call this strategy the balance heuristic. Substituting
w; into (11), thisis simply areformulation of the estimator (10) we
obtained using the combined probability distribution.
Thefollowing theorem gives evidencethat these weighting func-
tions are good:

Theorem 1. Let wq,...,w, be any non-negative functions with
Zi wi =1, andlet 4, . .., W, be the weighting functions above
(thebalance heuristic). Let F'and #' bethe corresponding combined
estimators(11). Then

1 2
Fo.

wmswm+( -

See App. A for a proof. This theorem says that no choice of the
w; can improve upon the variance of the balance heuristic by more
than (1/min; n, — 1/N)F? (recal that F is the quantity we are
trying to estimate). This “variance gap” is very small relative to
thevariance caused by apoorly chosen sampling distribution, aswe
saw in Fig. 2. Also, the variance gap goesto zero as the number of
samplesincreases (assuming all »; are increased).

Furthermore, these weighting functions are practical to evaluate.
The key requirement is that given a sample X; from p;, we must
be able to evaluate p; (X;) for al j. Any unbiased Monte Carlo
agorithm must be able to evaluate p;(.X;), so this is often just
a matter of reorganizing the routines that compute probabilities.
The time to evaluate these probabilities is generally insignificant
compared to other rendering calculations, aswe show in Sec. 4.

(12)

()=

min; n;



p2

Figure 3: Two distributions for sampling the integrand.

3.4 Other weighting heuristics

Theorem 1 implies that although the balance heuristic isgood, there
isstill roomforimprovement. Inthissectionwediscusstwofamilies
of heuristics that in practice often have lower variance than the
balance heuristic. These heuristics satisfy > . w;(z) = 1 and thus
give unbiased estimates.

We are motivated by the common situation where oneof the p; is
an almost perfect match for f (e.g. BRDF sampling with the mirror-
like surfacein Fig. 2). To develop our ideas, consider the situation
inFig. 3, where f isavery peakeddistribution, p; isproportional to
f,and p2 istheuniform distribution. Assumethat we take an equal
number of samplesfrom both p;, and form aweighted combination
using the multi-sample model (11).

Since p; is a zero-variance importance sampling distribution
(f(X1)/p1(X1) = F is constant), the optimal weighting func-
tions are obviously w(z) = 1, wz(z) = 0. We cannot expect to
guessthis using only pointwise evaluation of the p; and f; however,
we would like to get as closeto thisideal as possible.

How well does the balance heuristic perform in this situation,
and how can we improve it? Consider the contributions of samples
from p; and p. separately. Most samples from p; occur near the
peak, where the weighted sample value (see (12)) is approximately
equal to F. Similarly, most samples from p, occur awvay from the
peak, where their sample valueis zero (because f is zero there).

So far, this is very close to optimal. However there are two
effects that lead to additional variance. Occasionally a sample from
p1 occurs away from the peak (i.e. where p; > p» doesnot hold).
Inthiscasetheweight p, /(p1 +p2 ) producesasamplevaluesmaller
than F; in animage, this showsup as dark spots. On the other hand,
sometimes a sample X, from p, occurs near the peak of f. These
have aweighted samplevalueslightly smaller than F (see Sec. 3.3).
In an image, this shows up as occasional bright spots. However,
these “ spikes” are relatively small in magnitude, because a sample
from p, contributes the same as an equivalent sample from p; .

We present two families of heuristics that reduce variance in
this important limiting case. They are variations on the balance
heuristic, where the weighting functions have been “ sharpened” by
making large weights closer to one and small weightscloser to zero.
Thisis effective at reducing both types of noise above.

The cutoff heuristic modifies the weighting functions by discard-
ing samples with low weight:?

0
D
2 Api i > o pmax}

where pma.x = max; p;. The constant o determines how small p;
must be compared to pr,.x beforewe assign it a zero weight.

The power heuristic raises all weights to a power 5, and then
normalizes:

if Pi < O Praax

otherwise 13)

P
T = G
>0,

2All p; and w; are implicitly functions of . For simplicity we have
assumed all n; are equal; otherwise replace p; by n;p; everywhere.

(14)
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Notice that when « = 0 or § = 1, we get the balance heuristic.
When a=1 or § = oo, we get the maximum heuristic:

{1
w; =

0
This heuristic simply partitions the domain according to which dis-
tribution p; generates samplesthere with the highest probability.
The advantage of these heuristics is reduced variance when one
of the p; ismuch better than therest. Their performanceis otherwise
similar to the balance heuristic; it is possibleto show they are never
much worse (we give boundsin App. A, measurementsin Sec. 4.1).

If Pt = Pmax

otherwise (15)

3.5 The one-sample model: optimality

In this section, we consider a sampling model where we our com-
bination methods are optimal. Under this one-sample model, each
sample is taken from a randomly selected distribution p;. Distri-
bution p; is chosen with probability ¢;. Thisideais used in path
tracing for example, where at each bounce we choose randomly
between the diffuse, specular, or transmitted distributions.

Again, each estimator is parameterized by a set of weighting
functions {w;(«)}. The processof choosing a distribution, taking
a sample, and computing the weighted sample value is described
mathematically by the combined estimator

_ wi(X1)f(X1)

= (X where I = min{: | U < ch} . (16)

j=1

Here U isauniformly distributed random variableon ([0, 1), I isthe

index of therandomly chosendistribution, and X ; isasamplefrom

distribution /. This estimator is unbiased aslongas > " w; = 1.
In this case, the balance weighting strategy is optimal:

Theorem 2. Let wq, ..., wy, be any non-negative functions with
Yo iwi = 1, and let w1, ..., @, be the weighting functions (12).
Let 7 and F' bethe corresponding combined estimators(16). Then

VIFI < VIF].

4 Experiments

4.1 Distribution ray tracing

Our first test is the computation of glossy highlights from area
light sources (see also Sec.2.3 and Fig.2). The area sampling
technique® used in Fig. 2(a) works well for small light sources and
rough surfaces. The directional sampling technique in (b) does
well for large light sources and smooth surfaces. In (c), the power
heuristic with 5 =2 isused to combine both kinds of samples. This
method works very well for all light source/surface combinations.

We have also measured variance numerically as a function of
roughness. Fig.4 shows the test setup, and the results are sum-
marized in Fig. 5. Notice that all four weighting heuristics yield a
variance that is close (on an absolute scale) to the minimum vari-
ance when either sampling technique is used alone. In particular,
Thm. 1 guarantees that the variance o2 of the balance heuristic is
within /2 of the best input technique. The plotsin Fig. 5(a) are
well within that bound.

At the extremes of the roughness axis there are significant dif-
ferences among the heuristics. As expected, the balance heuristic
(a) performs worst at the extremes, since the other heuristics were
specifically designed for the case when one sampling techniqueis
much better than the rest. The power heuristic (c) with 5 =2 works
especially well over the whole range of roughnessvalues.

3 Direction &/ is used to compute a point 2z on the light source directly,
rather than casting aray to find the first visible point. Thusform (2) of the
reflectance equation is used, making this an area sampling technique.



(c) The power heuristic (G =2).

!

\ /
/ directional

1.5

14 \ /

(d) The maximum heuristic.

Figure 5: Variance measurementsfor the test case in Fig. 4. Each graph plots o/ 1« vs. surface roughness, where o2 is the variance of a single sample
and 1 is the mean. Three curves are shown, corresponding to the area sampling technique from Fig. 2(a), the directional sampling technique from
Fig. 2(b), and aweighted combination of both sample types using the (a) balance, (b) cutoff, (c) power, and (d) maximum heuristics. The images above
each graph are computed with the corresponding heuristic, for the three roughnessvalues circled (one sample per pixel, box filter). The center pixel of
these images correspondsto the viewing ray used for the variance measurements.

D gherical

= light
—, >~
/ N
ST source

o

glossy surface

Figure 4: A scale diagram of the setup used to measure the variance
of thehighlight calculation. Thelight source occupiesasolid angle of
0.063 radians. The variancefor each roughnessvalue was measured
by taking 100,000 samples using the viewing ray shown.

Above the graphs we show how the variance of each method
appearsin animage, for three circled roughnessvalues. Notice how
the cutoff, power, and maximum heuristics reduce the “ bright spot”
and “dark spot” noise (Sec. 3.4) at the extremes.

Recall that to evaluate the weights at a point =, we must com-
pute the probabilities with which both methods generate =. For
example, if = is a point on the light source generated by (a), we
find the probability p2 (&) do(&) that (b) generates the direction
&/ pointing toward =, and convert this probability to the measure
p2(z) dA(z) using(9). Thetotal time spent evaluating probabilities
and weighting functionsin our tests was less than 5%.
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4.2 Final gather

In this section we consider asimple test case motivated by multi-
pass global illumination algorithms. These algorithms typically
compute an approximate solution using the finite element method,
followed by oneor moreray tracing passesto replace parts of the so-
lution that are poorly approximated or missing. For example, some
radiosity algorithms use a local pass or final gather to recompute
certain coefficients more accurately.

We examine a variation called per-pixel final gather. The idea
is to compute an approximate radiosity solution, and then use it
to illuminate the visible surfaces during a ray tracing pass[11, 2].
Essentially, this type of final gather is equivalent to ray tracing with
many area light sources (one for each patch, or one for each link
in a hierarchical solution). As with the glossy highlight example,
there are two common sampling techniques. The brightest patches
are classified as “light sources’[2], and are handled with an area
sampling technique (e.g. samplesaredistributed on thelight sources
accordingto emitted power). Theremaining patchesare sampled by
casting raysrandomly into the scene (i.e. directional sampling from
the point intersected by the viewing ray). If one of theserayshitsa
light source patch, the samplevalueis zero (to avoid counting those
patches twice). Within our framework for combining sampling
techniques, this is clearly a partitioning of the integration domain
into two regions.

Given some classification of patchesinto light sources and non-
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Figure 6: A simple test scene consisting of one area light source (i.e. a bright patch) and an adjacent diffuse surface. The images were computed by
(a) sampling the light source according to emitted power, with n; =3 samples per pixel, (b) sampling the hemisphere according to the projected solid
angle[3] cos(8/) do (&) (see Fig. 1), with no = 6 samples per pixel, and (c) a weighted combination of samples from (a) and (b) using the power
heuristic with 3 =2. (d) A plot of &/ (standard deviation divided by mean) as a function of distance from the light source, for ny =1 and ny = 2.

light sources, we consider alternative ways of combining the two
types of samples. To test our weighting strategies, we used the
extremely simpletest sceneshownin Fig. 6. Twiceasmany samples
aretakenin (b) than (a); in practicethis ratio would be substantially
higher (i.e. the number of directional samples vs. the number of
samplesfor any one light source).

Notice that Fig. 6(a) does poorly for points near the light source,
becausethe sample distribution does not takeinto accountthe 1 /72
distance term of the reflectance equation (2). On the other hand (b)
doespoorly far away from the light source, whenthelight subtendsa
small solidangle. InFig. 6(c), the power heuristicisused to combine
samples from (@) and (b). As expected, this method performs well
at all distances. Although (c) uses more samples (the sum of (a)
and (b)), this is a valid comparison with the partitioning approach
(which also uses both kinds of samples). Variance measurements
are plotted in Fig. 6(d).

4.3 Bidirectional path tracing

The basic goal of Monte Carlo path tracing is to estimate the value
of each pixel in an image by direct sampling of the rendering and
measurement equations (Sec. 2.1). In this section, we show that by
combining samples from several importance sampling techniques,
this process can be made more efficient. As a source of sampling
distributions, we use bidirectional path tracing (introduced inde-
pendently in [14] and [8, 9]). We briefly overview the theory below.

To apply our methods, we must first express the value I, of a
pixel p in the standard form fﬂ f(z)dp(z). Todo this, we write
out equations (3), (4), and (5) explicitly:

Ip Wy, L) = <WP’Zi TiLe>

(17)

/ 2Le (X0—>X1 )G(X0<—>X1 )WP(X0—>X1) dA(Xo) dA(X1 )

+ / Le(x0—x%1)G(Xx0—%1) fr (Xo—X1—X2)
M G %2 )W (31— ) dA(x0) dA(x1 ) dA(x2)
_|_

To write this as asingle integral fﬂ f(z)du(z), let Q bethe set of
transport paths of all lengths. Each transport path = of length k isa
sequencexoX; . .. Xx of pointsx; € M. Themeasuredu(x) onQ
isdefinedby du(7) = dA(xo) . ..dA(xx).* Finaly, theintegrand
f (=) issimply the appropriate term from the expansion above, for
@(ample f(Xo X1) = L. (X0—>X1 )G(X0<—>X1 )WP(X0—>X1).

Path tracing algorithms can be interpreted as methods for sam-
pling thisintegral directly, by generating transport paths = randomly
and using the standard estimate f(r)/p(x). Observe that paths
where f () is large satisfy two conditions: they carry arelatively

tdu(m) = dA(x0)G(x0 =x1)dA(x1) ... G(xp_1 —x5)dA(x}) is
another possibility—this measures the differential throughput of a path.
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Figure 7: A transport path from a light source to the camera lens,
created by concatenating two separately generated pieces.
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Figure 8: The four bidirectional sampling strategies for paths of
length two (direct lighting). Intuitively, they can be described as (a)
Monte Carlo path tracing with no special handling of light sources,
(b) standard MC path tracing with direct lighting, (c) depositing
(splatting) light on theimage when a“ photon” hits avisible surface,
and (d) depositing light when a photon hits the cameralens.

large amount of light, and they have arelatively large weight in the
measurement process that generates the final image. Bidirectional
path tracing uses this idea to construct a family of importance-
sampling techniquesthat trade off one property against the other.

Unlike standard path tracing, which generates transport paths
by starting from the eye and following random bounces backward
to the light sources, the bidirectional approach builds a path by
connecting two independently generated pieces, one starting from
the light sources and the other from the eye. For example, in Fig. 7
the light subpath x¢x; is constructed by choosing a random point
xo onalight source (area sampling), followed by casting a random
ray (directional sampling) to find x;. The eye subpath x;x3x4
is constructed by a similar process starting from a random point
x4 on the cameralens. A complete transport path is formed by
concatenating these two pieces. (This path may carry no light, for
exampleif x; and x, are not mutually visible.)

Thisidealeadsto aset of sampling techniquesfor transport paths.
Each technique generates paths of a specific length &, by randomly
generating a light subpath with m vertices, randomly generating an
eye subpathwith k+1—m vertices, and concatenatingthem. Intotal
there are k + 2 distinct bidirectional sampling techniques for paths
of length & (letting ,» = 0,...,k+1, see Fig.8). Each of these
isreally aframework for sampling rather than a specific technique,



(b) Combines samples from all the bidirectional techniques (c) Standard path tracing using the same amount of work

Figure 9: The scene containsa spot light, afloor lamp, atable, and abig glass egg. Image (b) usesthe power heuristic (with 3 = 2) to combine samplesfrom a
family of bidirectional path tracing techniques, whose weighted contributions are shown in (a). Row : shows techniques that sample transport paths of length
1+41; them-th image uses the distribution p; .1 ,», (see Sec.4.3). Imagesin row < have been over-exposed by ¢ f-stops so that details can be seen.
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sincethe paths generated depend on the distributions used to choose
each vertex (area sampling for the first vertex of each subpath,
usually directional sampling for the rest). These methods can be
very diverse, e.g. sophisticated direct lighting techniques can be
used to choosethe first vertex of the light subpath.

Each technique definesa probability distribution p ,, (7) dp ()
on paths of length k. We can compute py. . (7) explicitly by mul-
tiplying the probabilities p(x;) d A(x;) with which the individual
vertices were generated. Vertices that were chosen using a direc-
tional distribution p(&) do (&) can be converted to the areameasure
using (9). To see why these distributions are good candidates for
importance sampling, consider theintegrand (17) for pathsof length
k. Itisaproduct of many unrelated functions: L., W, k different
G factors, and & — 1 different f, factors. Each bidirectional tech-
nique includes a different subset of these factors in its sampling
distribution; among them, we are more likely to generate paths that
contribute significantly to the image.

We now have all the tools to combine samples from these tech-
niques using the methods of Sec.3: we can take a sample from any
of the distributions px ,-, and given any path = of length &£ we can
evaluate f(7) and px m (7).

Fig. 9 shows a scene that we used to test these ideas. Diffuse,
glossy, and pure specular surfaces are present. Transport paths of
lengths up to £ = 5 were sampled using the bidirectional distribu-
tions ps . described above. For efficiency, we randomly generate
maximum-length eye and light subpathsin pairs. We then take sam-
plesfrom all px ., by joining each prefix of the light subpathto each
suffix of the eye subpath. For example, to sample p» 1 we concate-
nate the first vertex of the light subpath and the last two vertices of
the eye subpath. Each such group of samplesis dependent, but this
does not appear to significantly affect our results. Another impor-
tant optimization reducesthe number of visibility tests between the
eye and light subpaths, by using Russian roulette [6] to randomly
suppress small potential contributions without adding bias.

Thefinal image in Fig. 9(b) was created by combining samples
from all distributions using the power heuristic (with g = 2). The
image is 500 by 500 with 25 samplesper pixel. The weighted con-
tribution from each technique is shown in the pyramid in Fig. 9(a).
The pyramid does not show the compl ete set of sampling techniques;
paths of length one are not shown because the light sources are not
directly visible, and one column has been stripped from the left and
right sides of each row because these images are virtually black
(i.e. the weighted contributions are very small).

Observe the caustics on the table, both directly from the spot-
light and indirectly from reflected light on the ceiling. The unusual
caustic pattern to the left is caused by the square shape of the spot-
light’s emitting surface. Notice that some effects, such as caustics
and specular reflections, get their contributions almost entirely from
onesampling technique. Thissaysthat the other techniquesarevery
poor estimators of these contributions.

For comparison, Fig. 9(c) shows standard MC path tracing with
56 samples per pixel (the same computation time as Fig. 9(b)). Di-
rect lighting was used on all paths except for caustics, which were
rendered by following paths right back to the light sources (the
caustics would otherwise not be visible).

5 Discussion

5.1 Conclusions

Aswe have shown, our methodsfor combining sampling techniques
can substantially reduce the variance of Monte Carlo rendering
calculations. Thesetechniquesare practical, and the additional cost
issmall—Ilessthan 10% of thetimein our testswas spent evaluating
probabilities and weighting functions. We also have strong bounds
on their performance relative to other combination strategies.
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Overall, we found that the power heuristic (with 8 = 2) gave
the best results. It is similar to the balance heuristic in general,
but has significantly lower variance when one of the p; is a good
match for f. When none of the given sampling distributions is a
good match for f (e.g. Fig.6), the differences among the various
weighting strategies are small.

5.2 Choosing the number of samples

First, observe that no strategy is greatly superior to that of simply
setting all ¢; equal. If we are alocating N samples among »
sampling techniques, it is easy to show that

o n — 1 2

VIE] < nV[F]+ F

where F' uses the balance heuristic with all ¢; equal, and F' uses
any unbiased weighting functions and ¢; (satisfying Zl w; = 1
and w; = 0 if ¢; = 0). Thus, changing the ¢; can improve the
variance by at most afactor of , plusasmall additiveterm. On the
other hand, a poor choice of the w; (e.g. a poor partitioning of the
integration domain) can increase variance by an arbitrary amount.

Also, there are situations where the ¢; are naturally constrained.
For example, in bidirectional path tracing it is more efficient to take
one sample from all distributions at once (Sec.4.3). In the glossy
highlights example, the ¢; are constrained because the sasmplesare
used for other purposes (direct lighting samplesfor the diffuse com-
ponent, and directional samples for glossy reflections of objects
other than light sources). Often these other purposes will dictate
the number of samples taken. In this case, by taking a weighted
combination of both types of sampleswe can reduce the variance of
the highlight calculation essentially for free.

5.3 Comments on direct lighting

The examples of Sec.4.1,4.2 are essentially direct lighting prob-
lems. They differ only in the terms of the reflectance equation
that cause high variance—the BRDF, the 1/r2 distanceterm, or the
emitted radiance distribution ..

In Sec.4.2, we used a simple light source sampling tech-
nique. Although there are more sophisticated techniquesfor direct
lighting[13], it can still be useful to combine several kinds of sam-
ples. Observe that any strategy for sampling a group of patches
as light sources induces some probability distribution on the patch
surfaces. Since these strategies are always approximations, some
factorsof thereflectanceequation (2) will not be approximated well.
In parts of the scene where these omitted factors become dominant,
simple directional sampling can be more efficient. By combining
both kinds of samples, we can make such strategies more robust.

Shirley and Wang[12] also comparedirectional and areasampling
techniquesfor glossy highlights (Sec.4.1). They analyze a specific
Phong-like BRDF and light source sampling method, and derive an
expression for when to switch from one to the other (as a function
of surface roughnessand light source solid angle). In contrast, our
methods work for general BRDF's and sampling techniques, and
can combine samples from any number of distributions.

5.4 Approximating the weighting functions

The modelsin Sec. 3 assumethat given a sample X; from distribu-
tion p;, we can compute p; (z) exactly for all other j. Sometimes
this is problematic—e.g. p;(z) may be expensive or complicated
to evaluate. More difficulties arise when a sampling technique p;
uses random numbers that cannot be determined from the resulting
sample point z. For example, some direct lighting strategies13]
generate several candidate sample points z;, and then choose one
randomly. Given an arbitrary point z, it is difficult to evaluate



p;(z) because this probability depends on information other than
the sample location z itself.

The easiest way to handle these problems is to recall that the
results are unbiased aslong as ) . wi(x) = 1. When computing
the w;, it is perfectly reasonable to use an approximation p’; of the
true probabilities p;. This will give unbiased results even if the
approximations p’; are poor, as long as they are consistently used
(i.e. p}(X;) doesnot depend on ¢). Of course, poor approximations
may lead to increased variance. Note that p;(X;) must always be
evaluated exactly in (11) to avoid bias; however thisis required of
any unbiased Monte Carlo algorithm.

5.5 Future work

We would like to explore other applications where it makes sense
to use several sampling distributions. Even within the framework
of global illumination, there are many such problems. For example,
bidirectional path tracing can be used to estimate the coefficients of
basis functions defined on scene surfaces (let W, in (5) be the dual
basisfunction). Thisis an unexplored alternative to particle tracing
models for Monte Carlo radiosity, and may be an effective solution
to the problem of patchesthat do not receive enough particles.

Wethink that thereisgreat potential for designing better sampling
distributions—we hope that the existence of good methods to com-
bine the samples will spur further work in this area. Again, global
illumination provides arich framework, because of the complexity
of the domain and the integrand.

Another interesting problem is how to choose the ¢;. One re-
searchareaisthederivation of apriori rulesfor specific applications
(similar to [12]). Another goal is to find strategies for the general
case; adaptive methods seem promising here. Note that adaptive
methods can introduce bias, unless two-stage sampling is used [7].

Acknowledgments

Thanks to Pat Hanrahan, Marc Levoy, Luanne Lemmer, and the
anonymous reviewers for helpful commentsthat improved the pre-
sentation. Discussions with John Tukey were also useful. Thanks
to Bill Kalsow for answeringlots of questionsabout Modula-3[10],
the language we used for our rendering system. This research was
supported by the National Science Foundation (CCR-9215219), the
Digital SystemsResearch Center, and the Digital External Research
Program.

References
[1
2

J. Arvo and D. Kirk. Particle transport and image synthesis. Computer
Graphics (S GGRAPH ' 90 Proceedings), 24, 63—66 (1990).

S. Chen, H. Rushmeier, G. Miller, and D. Turner. A progressivemulti-
pass method for global illumination. Computer Graphics(SIGGRAPH
'91 Proceedings), 25, 165-174(1991).

M. Cohen and J. Wallace. Radiosity and Realistic Image Synthesis.
Academic Press, 1993.

R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Computer
Graphics (S GGRAPH ’84 Proceedings), 18, 137-146 (1984).

J. Kajiya. The rendering equation. Computer Graphics (S GGRAPH
'86 Proceedings), 20, 143-150 (1986).

M. Kalos and P. Whitlock. Monte Carlo Methods, Volume I: Basics.
J. Wiley, New York, 1986.

D. Kirk and J. Arvo. Unbiased sampling techniquesfor image synthe-
sis. Computer Graphics(SIGGRAPH '91), 25, 153-156 (1991).

E. Lafortuneand Y. Willems. Bi-directional path tracing. Proceedings
of CompuGraphics, Alvor, Portugal, 145-153 (Dec. 1993).

E. Lafortune, Y. Willems. A theoretical framework for physically based
rendering. Computer Graphics Forum, 13(2), 97-108 (1994).

G. Nelson, editor. Systems Programming with Modula-3. Pren-
tice Hall, 1991. An implementation of Modula-3 is available at
http://www.research.digital.com/SRC/.

(3l
(4
(5]
(6]
(7]
(8
(9
(1]

428

[11] H. Rushmeier. Realistic Image Synthesis for Sceneswith Radiatively
Participating Media. Doctoral Thesis, Cornell University, May 1988.
P. Shirley and C. Wang. Distribution ray tracing: theory and prac-
tice. Proceedings of the Third EurographicsWorkshop on Rendering,
Bristol, England, 33-44 (1992).

P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo Techniques
for Direct Lighting Calculations. ACM Transactions on Graphics, to

[12]
[13]

appear.
E. Veach and L. Guibas. Bidirectional estimators for light transport.
Proceedingsof the Fifth EurographicsWorkshop on Rendering, Darm-
stadt, Germany, 147-162 (June 1994).

[14]

Appendix A Proofs

Proof of Thm.1: Thevarianceis

n n;

1 wi (Xij)f(Xi )

14 — F; where F; ; = ——22 2~ 27

Z ni Z " " pi(Xij)
=1 g=1

n ng n n;
)RED PECTE) SED TR
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where the covarianceterms are zero becausethe X; ; are sampled indepen-
dently. We bound the two terms separately. For the first term, we get

SER T " W (@) ()
; ;E[Fi,]]:/ﬂizz;mdu(l’) .

Using the method of Lagrange multipliers, we minimize the integrand inde-
pendently at each point =z subject to the condition ,wi =1L Noting that
F2(=) isaconstant and dropping = from our notation, we must minimize

I PO
Setting all n+1 partial derivativesto zero, we obtain w; = w; (12). Thus
no other weighting strategy can reduce this term further.

The second term makes a negative contribution to the variance, so we
will prove an upper bound 2 /min; n; for the w,; and a lower bound
}'2/21. n; forthew;. Letting i; = E[F; ;] (thisisindependentof j), for
the upper bound we have

>

n 1 n; n 1
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J
Sincezi wi = F, wehavemax; u; < F, andthuszi p? < F2 which
proves the upper bound. The lower bound >~ 42 /n; > F2/>" . n; is
easily provenwith Lagrange multipliers. 1

Proof of Thm.2:  Because 72 is fixed in (8), it is enough to minimize
the second moment F[F2]. We have
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which is virtually identical to the second moment term that we minimized
in the proof of Thm. 1. 1
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We also present worst-case bounds for the weighting heuristics from
Sec. 3.4. The bounds havethe form

1 2
2o 7

where F' uses the indicated heuristic, and F* uses the (unknown) optimal
weightingfunctions. For the cutoff heuristic, wecanshowc = 14+ a(n—1),
while for the power heuristic we can show

1

min; n;

VIF] < cVIF*] + (

C=1+ =B 1)

When 3 =2, we can provethe stronger bound ¢ = %(1 + /).



