Architectures

• SISD (Single Instruction, Single Data)
• MIMD
• SIMD
 • GPU is an instance of SIMD
• (MISD – not used)

• SPMD (Single Program, Multiple Data)
• MPMD
Access to Memory

• Time to access memory can dominate a system’s performance – or lack of it
• How data is laid out across processor is very important

• Local memory per processor
 • All remote memory is accessed through a network
• No local memory
 • All memory is accessed through a network
• Of course, caching is always important
• NUMA – Non-Uniform Memory Access
Shared Memory

- Does the system provide a synchronization primitive across processors (an atomic read-modify-write cycle)?
- Can shared memory be cached?
- Are snoopy caches supported?
Network Architecture: Attributes

- Number of communication paths
- Number of switching points
- Width of each communication path (Single-bit wide vs. multi-bit bit wide)
- Is parallel communication allowed (i.e., can more than one message propagate through the network concurrently)?
- Network diameter – the maximum distance between any two communicating nodes
- Worm-hole routing
- Are intermediate switches autonomous or is there a control unit? Are switches message-switched or?
- How is the destination addressed?
- Does the speed of accessing remote memory differ by location (NUMA)?
- How many nodes can the network support? Is the limitation determined by cost or size or other feasibility?
- Are memory and processing co-located (peer-to-peer) or separated?
- Does intermediate network switching nodes have the ability to perform computation?
- Do messages flow in one direction through the network or can responses travel backwards?
Network Architecture: Examples

- Arbitrary
- Fully-connected
- Bus
 - Includes network of workstations (NOW) over Ethernet
 - Electrical limit on the number of nodes that can be connected to a single bus
 - Also limited because of conflicts accessing a single bus
- Token Ring
- Two-dimensional grid (mesh) with possible wrapping at edges (torus)
- Three-dimensional grid with possible wrapping at edges (torus)
- Crossbar
- Omega Network
- Butterfly Network
- Tree
- Fat Tree
- Hypercube
Fully-Connected (sometimes referred to as a Mesh)
Bus (including Thicknet & Thinnet Ethernet)
Token Ring
Two-Dimensional Grid
Three-Dimensional Grid
Crossbar
Multistage Network

- A message may pass through more than one switching node
- Reduces the number of switches required
- Originally designed for the PSTN (Public Switched Telephone Network) by Bell Labs

- The Omega Network is an example of a multistage network
 - Has the same interconnection pattern at each stage
 - Interconnection pattern is based on a perfect shuffle network

- The Butterfly Network is another example of a multistage network
Omega Network
Omega Network Routing

• Destination-tag routing
 • Forwards message through a switch based on a destination address bit
 • 0 means upper output
 • 1 means lower output

• XOR-tag routing
 • Sets each switch to be either pass-through or swapped
 • For upper input,
 • 0 means pass-through
 • 1 means swapped
 • For lower input,
 • 0 means swapped
 • 1 means pass-through

• Example shows a 2x2 switch, but higher degrees are possible
Analysis of Omega Network

• For 2x2 switches and n sources and n destinations (for n a power of two),
 • Number of switches per stage = $n/2$
 • Number of stages = $\log_2 n$
 • Total number of switches = $\frac{n}{2} \log_2 n = O(n \log n)$

• For $m \times m$ switches (for m a power of two) and n sources and n destinations (for n a power of two and for n a multiple of m),
 • Number of switches per stage = n/m
 • Number of stages = $\log_m n$
 • Total number of switches = $\frac{n}{m} \log_m n = O(n \log n)$ for $n \gg m$
Butterfly Network
Butterfly Network Routing

- Each stage selects a sub-section of that portion of the network
 - Allows a large Butterfly Network to be built because of this successive stage decomposition

- Does not have the same interconnection pattern at each stage

- Example shows a 2x2 switch, but higher degrees are possible
Analysis of Butterfly Network

• For 2x2 switches and n sources and n destinations (for n a power of two),
 • Number of switches per stage = n
 • Number of stages = $1 + \log_2 n$
 • First and last stages are composed of half switches
 • Total number of switches = $n \left(1 + \log_2 n\right) = O(n \log n)$
Tree
Fat Tree
Fat Tree Showing Multiple Data Paths Higher in the Tree
Fat Tree Analysis

• A Fat Tree alleviates the congestion that would occur at higher levels in the tree if messages are sent to uniformly distributed destinations
• A Fat Tree allows the network to be segmented among multiple subset trees

• If viewed from the side, a fat tree becomes bushier as you approach the root
 • Each message flows upward (i.e., toward the root) only as far as necessary – that is, to the first node that it has in common with its destination
 • As messages are sent up the tree (i.e., toward the root), a choice is made between multiple paths to alleviate congestion
 • Messages are routed to the destination as the message is sent down the tree (i.e., toward the leaves)
Hypercube
Data parallelism

• c*
Communication
Effect on Operating Systems

• Gang scheduling
 • Communicating processes on different processors need to be running for best performance – and, since performance is the reason to run on a multiprocessor system, this is important

• Memory allocation

• Inter-processor communication
 • n-dimensional Nearest neighbor
 • Arbitrary
 • send
 • get
 • Reductions
 • Scans