Basic Blocks, Next-Use, Liveness & Register Allocation

Prof. James L. Frankel
Harvard University
Identifying Basic Blocks

• A basic block is a maximum length sequence of instructions that must always be executed without interruption
 • This implies that the only entry point into the block is at the beginning
 • This implies that the only exit point from the block is at the end
Basic Blocks Algorithm (Finding Leaders)

• Apply the following algorithm to a list of IR instructions generated for a module

• First, identify leaders
 • A leader is an IR instruction that begins a basic block

① The first IR instruction is a leader
② Any target of a conditional or unconditional branch/jump is a leader
③ Any IR instruction immediately after a conditional or unconditional branch/jump is a leader
Basic Blocks Algorithm (Finding Basic Blocks)

- After finding all leaders, identify **basic blocks**

For each leader, its basic block consists of itself & all IR instructions up to but not including the next leader or the end of the IR program
Next-Use & Liveness Information

• We examine each basic block separately
• Initially, all non-temp variables in basic block B are labeled as live on exit with their next-use after the block
• Progress from the last IR statement to the first IR statement in the block
• At each statement i: $x = y \otimes z$ in B, where \otimes represents any operation and where i identifies this statement
 • First, attach to statement i the information about next use & liveness for x, y & z
 • Then, set x to “not live” & “no next use”
 • Finally, set y & z to “live” & set the next uses of y & z to i
• The order of these three steps is important
 • Associate the information about x, y & z with i before changing their liveness & next-use information
 • In case a variable appears on both the left- and right-hand sides, always set the information for the lhs variable before setting the information for the rhs variable
Liveness Across Basic Blocks

• The variables that are live at the end of a basic block is the union of those live at the beginning of each of its successor blocks
Flow Graph with Initial Constraints

\[a = b + c \]
\[d = d - b \]
\[e = a + f \]

\[f = a - d \]

\[b = d + c \]

\[b = d + f \]
\[e = a - c \]

\[b, d, e, f \text{ live} \]

All variables are \(a, b, c, d, e \& f \).
Establish Liveness on Exit from Basic Block B_4

Assume a, b, c, d, e & f live

All variables are a, b, c, d, e & f
Establish Liveness on Entry to Basic Block B_4 and on Exit from Basic Blocks B_2 and B_3

\[
\begin{align*}
 a &= b + c \\
 d &= d - b \\
 e &= a + f \\
 f &= a - d \\
 b &= d + f \\
 e &= a - c \\
\end{align*}
\]

Assume a, b, c, d, e, and f live

All variables are a, b, c, d, e, and f
Establish Liveness on Entry to Basic Blocks B_2 and B_3 and on Exit from Basic Block B_1

All variables are a, b, c, d, e, f live

B_1
- $a = b + c$
- $d = d - b$
- $e = a + f$

B_2
- $f = a - d$
- Assume a, b, c, d, e, f live

B_3
- $b = d + f$
- $e = a - c$
- b, d, e, f live

B_4
- $b = d + c$
- b, c, d, e, f live

All variables are a, b, c, d, e, f live
Establish Liveness on Entry to Basic Block B_1 and feed that information back to Block B_4.

All variables are a, b, c, d, e, and f.

Now known that $bcdf$ live (not a & e).

$b = d + c$

$b = d + f$

$e = a - c$

$a = b + c$

$d = d - b$

$e = a + f$

$b = d + f$

$e = a - c$

$f = a - d$

$b = d + f$

$e = a - c$

All variables are a, b, c, d, e, and f.

b, d, e, f live

b, c, d, e, f live
Update Liveness on Exit from Basic Block B_4

All variables are a, b, c, d, e, and f live.

Now known that $bcdf$ live (not a & e)

$acdef$
Update Liveness on Entry to Basic Block B_4 and on Exit from Basic Blocks B_2 and B_3.
Update Liveness on Entry to Basic Blocks B_2 and B_3 – No Changes to Liveness Discovered

All variables are a, b, c, d, e, and f live.

Now known that $bcdf$ live (not a & e).

$bcdef$

$acde$

$acdef$

$acdf$

$bcdf$

b, d, e, f live

b, c, d, e, f live

B_1

B_2

B_3

B_4
Liveness Across Basic Blocks in our Unoptimized Code

• *In our compilers and before any optimizations are performed*, our temporaries/registers are never live across *basic blocks*
 • We never use a temporary/register from one statement to another
 • We are using this behavior so that we are able to reset the use of temporaries/registers at the start of each new statement
 • Therefore, *in our compilers and before any optimizations are performed*, temporaries/registers are never live across *statements*

• Certain optimizations may cause temporaries/registers to be live across statements within a basic block
 • Unless you perform optimizations across basic blocks, temporaries/registers will not be live across basic blocks
Graph Coloring

• For an arbitrary graph, how many colors are needed to color each node such that no two connected nodes are the same color?
 • We say that a graph is k-Colorable, where k is the minimum number of colors to colorize such a graph

• It can be proven that this problem is NP-Complete
 • That is, in general it cannot be solved in polynomial time
 • This is a member of a set of problems that are very difficult to solve including the knapsack problem – packing 3D objects into a defined volume

• However, for many real-world problems, there are heuristics that can solve these problems in quite reasonable time
Graph Coloring for Planar Graphs

• If a graph is planar – that is, it can be mapped onto a planar (2D) surface with no crossing lines – how many colors are needed for such a graph?
• Problem was mentioned by Möbius as early as 1840
• Of course, planar graphs include our usual 2D maps in, say, a Mercator projection
• Imagine a Mercator projection representing a continent on the Earth
 • Each nation would be a node
 • Each nation must be contiguous
 • Borders would be connecting arcs
 • No two nations sharing a border would have the same color
Planar Graphs – 3-Colorable
Planar Graphs – 4-Colorable
Four Color Theorem for Planar Graphs

• The so-called Four Color Theorem showed that any planar graph is 4-Colorable
 • It was proven in 1976 by Kenneth Appel and Wolfgang Haken using a computer program that systematically identified all possible ways that nodes could be connected on a planar graph
 • 1,936 different maps were identified
Application of Graph Coloring to Register Allocation

- Initially assume an infinite number of registers/temporaries during code generation
- Create a graph in which nodes (representing registers/temporaries in a program fragment) are connected by an arc when the registers/temporaries are needed at the same time
- Then, the minimum number of colors to color such a graph would represent the minimum number of registers required for that program fragment
- Moreover, such a graph would identify the constraints on register assignment
- We call such a graph a Register Interference Graph
Register Interference Graph

• Each register is a node
• An edge connects two registers whenever one is live where the other is defined
 • For this example, we’ll assume that all named identifiers are registers

• We’ll examine basic block B_1 from above

 \[
 a = b + c \\
 d = d - b \\
 e = a + f
 \]
Register Interference Graph Coloring (1 of 2)

• Color graph with \(k\) colors, where \(k\) is the number of available registers
• No two adjacent nodes have the same color
• Color represents a register
• This problem is NP-Complete
• Heuristic: If a node has fewer than \(k\) edges, remove the node and its edges to simplify the graph and then try coloring the graph again
 • This works because, if a node has fewer than \(k\) edges we can always color that node with a different color from its neighbors and still use no more than \(k\) colors
Register Interference Graph Coloring (2 of 2)

• Simplify the graph by removing all nodes with fewer than \(k \) edges and those nodes’ edges
 • If the resultant graph is empty, then we’re done!
 • Assign colors (i.e., map temporaries into registers) in the opposite order

• If nodes still remain with \(k \) or more edges, introduce spill code to move the contents of registers into temporaries in memory and then to restore them when needed
 • Spilling a register into memory frees the register and breaks edges in the graph
 • Using memory is slow, so...
 • Avoid spills in inner loops
Basic Block B_1 Alone Including Liveness

\[
\begin{align*}
 a &= b + c \\
 d &= d - b \\
 e &= a + f
\end{align*}
\]
Building Register Interference Graph (1 of 10)

- b is live when a is defined
Building Register Interference Graph (2 of 10)

• c is live when a is defined

\[
\begin{align*}
 a &= b + c \\
 d &= d - b \\
 e &= a + f
\end{align*}
\]
Building Register Interference Graph (3 of 10)

• d is live when a is defined

\[
\begin{align*}
 a &= b + c \\
 d &= d - b \\
 e &= a + f
\end{align*}
\]
Building Register Interference Graph (4 of 10)

- f is live when a is defined
Building Register Interference Graph (5 of 10)

- a is live when d is defined
- c is live when d is defined
• f is live when d is defined

\[
\begin{align*}
\text{a} &= \text{b} + \text{c} \\
\text{d} &= \text{d} - \text{b} \\
\text{e} &= \text{a} + \text{f}
\end{align*}
\]
Building Register Interference Graph (7 of 10)

• a is live when e is defined
Building Register Interference Graph (8 of 10)

- c is live when e is defined
Building Register Interference Graph (9 of 10)

• d is live when e is defined

\[
\begin{align*}
da &= b + c \\
d &= d - b \\
e &= a + f \\
B_1 &= \text{abcdef}
\end{align*}
\]
Building Register Interference Graph (10 of 10)

• f is live when e is defined

\[a = b + c \]
\[d = d - b \]
\[e = a + f \]

acdef

BCDF

B1
Register Interference Graph for Basic Block B_1
Node Removal (4-Colorable) (1 of 5)

Remove Node b
(1 Edge < 4 Edges)
Node Removal (4-Colorable) (2 of 5)

Remove Node c
(3 Edges < 4 Edges)
Node Removal (4-Colorable) (3 of 5)

Remove Node d
(3 Edges < 4 Edges)
Node Removal (4-Colorable) (4 of 5)

Remove Node e
(2 Edges < 4 Edges)
Node Removal (4-Colorable) (5 of 5)

Remove Node f
(1 Edge < 4 Edges)
Color Node “a” Red (r0)
Node Coloring (4-Colorable) (2 of 6)

Color Node “f” Green (r1)
Node Coloring (4-Colorable) (3 of 6)

Color Node “e” Blue (r2)
Node Coloring (4-Colorable) (4 of 6)

Color Node “d” Yellow (r3)
Node Coloring (4-Colorable) (5 of 6)

Color Node “c” Green (r1)
Node Coloring (4-Colorable) (6 of 6)

Color Node “b” Green (r1)
Final Register Assignment for Basic Block B_1

- Final Register Assignment for B_1
 - a is in $r0$ (red)
 - b is in $r1$ (green)
 - c is in $r1$ (green)
 - d is in $r3$ (yellow)
 - e is in $r2$ (blue)
 - f is in $r1$ (green)

- We could have chosen to use more than four registers
How Many Registers to Use?

• We’ll leave this as an optimization question for the students
• Perhaps try to use the minimum number of registers possible
 • But, if we’re saving all of the $s registers anyway this is of no benefit
• Perhaps make all of the $s registers available and minimize the number of $t registers used if there can be no spill code