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Reasons to Optimize

• Reduce execution time

• Reduce memory requirements
• Not so important with very large memories

• For large data structures, alignment may be an issue

• For multiprocessor systems with local memory, locality of data is 
extremely important



Optimization Constraints

• Preserve Semantics

• If performed at the IR level, then optimization is both language and 
machine independent

• Some new IR instructions may be introduced to allow machine-
specific optimizations



Optimization Application

• It may be beneficial to apply any one optimization more than once
• Perhaps both before and after a different optimization has been applied

• It is often important to consider the order in which optimizations are 
performed



Optimization In Our Projects

• In our implementations, all optimizations will be performed at the IR level
• That is, each optimization will make a pass over the IR doubly-linked list and will 

modify the IR list

• In order to more easily generate specific MIPS instructions, create new 
machine-specific IR instructions
• For example, these may be created for immediate MIPS instructions

• Always have a compiler mode where the IR can be pretty-printed before 
and after optimizations
• Bugs are often introduced into the IR by faulty optimizations

• Allow differing levels of optimization
• Compare code without optimization to code after differing optimization levels



Degree of Analysis Required

• Peephole Optimizations
• Requires examining a short sequence (called the peephole) of instructions

• Optimization is performed only within that sequence

• No deep analysis required

• Optimizations within Basic Blocks
• Use liveness, next-use, reaching definitions, and other information to perform 

the analysis

• Global Optimization
• Across basic blocks

• Interprocedural Optimization



Reaching Definitions

• In many cases, an optimization can be performed only when the 
variables involved in an expression have not changed since a previous 
computation

• A reaching definition analysis may be useful in these and other cases

• Reaching definition analysis determines where in a program each 
variable x may have been defined when control reaches point p

• A definition d reaches a point p if there is a path from the point 
immediately following d to p and that d is not killed along that path
• A definition of variable x is a statement that assigns, or may assign, a value 

to x



Elimination of Redundant Loads and Stores

• (addressOf, $t0, a)

• (loadWord, $t1, $t0)

• (storeWord, $t0, $t1)

• The last storeWord is unnecessary

• This optimization may not be performed if the variable is tagged as 
volatile



Common Subexpression Elimination

• May need to apply commutativity and/or associativity to identify 
these
• Beware, some operations that are mathematically associative may not be 

associative as an instruction on a computer (e.g., floating point operations)

• Can arise from subscripting (i.e., addition of an integral value to a 
pointer)



Copy Propagation

• b = a

• c = b



Dead/Unreachable Code Elimination

• Code may be present after a goto, return, break, or continue

• Code may be present after a conditional operator and the value of the 
operand may be determinable at compile time
• The operand may be a preprocessor symbol

• The operand may be a const-qualified identifier

• The operand may be determined after constant folding or evaluation at 
compile time



Flow-of-Control Optimization

• Replace branches/jumps to branches/jumps with a direct 
branch/jump
• Also called jump threading



Machine-Specific Optimizations

• Use of branch rather than jump when appropriate

• Use of offset field in load and store instructions
• Instead of load address followed by load or store

• Use of immediate instructions when possible

• Use of autoincrement or autodecrement addressing modes if they are 
present in the target instruction set

• Use of instructions to manipulate a hardware-supported stack if they 
are present in the target instruction set



Constant Folding

• Evaluate expressions composed of constants known at compile time



Code Motion

• Move code out of loops if it is loop invariant

• This may include expressions that are solely based on variables that 
do not change inside a loop



Reduction in Strength

• If a lower-strength operator is faster and has the same semantics, use 
it instead

• a*2 becomes a+a or a<<1

• unsigned int ui;
ui/2 becomes ui>>1

• a*4 becomes a<<2



Induction Variables

• An induction variable is a variable whose value is incremented or 
decremented by a constant value for each iteration of a loop

• Multiple induction variables may exist in a single loop



Induction Variables and Reduction in Strength

sum = 0;
for(i = 0; i < 100; i++) {

sum += a[i];
}

becomes

sum = 0;
p = &a[0];
for(i = 0; i < 100; i++) {

sum += *p++;
}



Induction Variables and Reduction in Strength

sum = 0;
p = &a[0];
for(i = 0; i < 100; i++) {

sum += *p++;
}

becomes

sum = 0;
for(p = &a[0]; p < &a[100]; p++) {

sum += *p;
}



Identities

• Operations on an identity for a particular operator can be removed

• a+0

• a-0

• a*1

• a/1

• a<<0

• a>>0

• a&-1

• a|0

• a^0

• etc.



Algebraic Simplification

• Some operations can be performed at compile time

• a-a

• a/a

• a^a

• a&a

• a|a

• etc.



Inlining of Functions

• Removes the overhead of calling and returning from the function

• Allows more straight-line code to be optimized without requiring 
interprocedural analysis

• Increases code size
• This may reduce cache efficiency

• Not running code at the caller and at the callee may improve cache 
performance
• It is possible that the caller’s code and the callee’s code are mapped to the 

same cache line



Loop Reordering

• Accessing data memory in a sequential order may decrease access 
time to those variables making the program run faster

• For example, accessing elements of an array in the order in which 
they are laid out in memory is very helpful
• Row-major order

• Rightmost indicies vary faster in consecutive memory locations

• C, C++, Python use this ordering

• Column-major order
• Leftmost indicies vary faster in consecutive memory locations

• OpenGL, MATLAB, R, Fortran use this ordering



Loop Unrolling

• Provides more straight-line code for optimization without requiring 
global analysis

• Decreases the penalty for branching back to the beginning of the loop



Array Alignment/Padding/Layout

• Makes access to array elements faster



Instruction Scheduling

• Pipelining can benefit from improved ordering of instructions



Tail Recursion Elimination

• A recursive call to a function that appears as the last operation may 
be able to be replaced by iteration within the function

• Present
• factorialTailRecursive.c

• factorialTailRecursiveOptimized.c



Low-Level MIPS Optimizations

• Even though we are performing our optimizations at the IR level, my 
example will show the resulting changes at the MIPS assembler code 
level



Utilize MIPS addiu Instruction

• Instead of using the li pseudo-instruction to load a constant into a register followed by accessing 
that register in the addu instruction, we can directly access a constant in an addiu instruction
• The li pseudo-instruction is able to load a full 32-bit constant into a register by generating more than one 

MIPS instruction, if necessary
• But, the range of the immediate field is addiu is limited – it’s a 16-bit sign-extended immediate field – so this 

transformation can’t be applied with constants that are out of range

• Using the addiu instruction, we can convert:
li $s0, 5 # $s0 <- 5
addu $s2, $s1, $s0 # $s2 <- $s1+5

• Into:
li $s0, 5 # $s0 <- 5
addiu $s2, $s1, 5 # $s2 <- $s1+5

• The code that has been changed is highlighted in red

• Note that in order to apply this optimization, $s0 cannot be modified between the li and the addu
instructions

• The li instruction is not removed yet because we don’t know if $s0 is used elsewhere



Example One of Low-Level MIPS Immediate 
Optimizations
• Start with the following C program:

int a, b;
int main(void) {

…
a = b+5;
…

}

• Straight-forward code generation will yield:
la $s0, _Global_a # $s0 -> a
la $s1, _Global_b # $s1 -> b
li $s2, 5 # $s2 <- 5
lw $s3, ($s1) # $s3 <- b
addu $s4, $s3, $s2 # $s4 <- b+5
sw $s4, ($s0) # a <- b+5



Low-Level Optimization Using addiu
Instruction
• If we use the addiu instruction, we have:

la $s0, _Global_a # $s0 -> a
la $s1, _Global_b # $s1 -> b
li $s2, 5 # $s2 <- 5
lw $s3, ($s1) # $s3 <- b
addiu $s4, $s3, 5 # $s4 <- b+5
sw $s4, ($s0) # a <- b+5



Apply Dead/Unreachable Code Elimination

• If we apply dead code elimination, we have:
la $s0, _Global_a # $s0 -> a
la $s1, _Global_b # $s1 -> b
lw $s3, ($s1) # $s3 <- b
addiu $s4, $s3, 5 # $s4 <- b+5
sw $s4, ($s0) # a <- b+5

• The li instruction is now removed



Example Two of Several Low-Level MIPS 
Optimizations with Local Variables
• Start with the following C program:

int a, b, c;
b = a;
c = a;

• Lets assume stack offsets of 96 for a, 100 for b, and 104 for c
• Straight-forward code generation will yield:

la $s0, 100($fp) # $s0 -> b
la $s1, 96($fp) # $s1 -> a
lw $s2, ($s1) # $s2 <- a
sw $s2, ($s0) # b <- a
la $s3, 104($fp) # $s3 -> c
la $s4, 96($fp) # $s4 -> a
lw $s5, ($s4) # $s5 <- a
sw $s5, ($s3) # c <- a



Low-Level MIPS Optimizations – Using the 
Offset Field in lw Instructions
• Using the offset field in lw instructions, we can convert:

la $s1, 96($fp) # $s1 -> a
lw $s2, ($s1) # $s2 <- a

• Into:
la $s1, 96($fp) # $s1 -> a
lw $s2, 96($fp) # $s2 <- a

• The code that has been changed is highlighted in red
• Note that in order to apply this optimization, $s1 cannot be modified 

between the la and the lw instructions
• The la instruction is not removed yet because we don’t know if $s1 is used 

elsewhere



Apply Using the Offset Field in lw Instructions

• If we apply using the offset field in lw instructions, we have:
la $s0, 100($fp) # $s0 -> b
la $s1, 96($fp) # $s1 -> a
lw $s2, 96($fp) # $s2 <- a
sw $s2, ($s0) # b <- a
la $s3, 104($fp) # $s3 -> c
la $s4, 96($fp) # $s4 -> a
lw $s5, 96($fp) # $s5 <- a
sw $s5, ($s3) # c <- a

• The code that has been changed is highlighted in red



Apply Using the Offset Field in sw Instructions

• If we apply a similar transformation by using the offset field in sw
instructions, we have:

la $s0, 100($fp) # $s0 -> b
la $s1, 96($fp) # $s1 -> a
lw $s2, 96($fp) # $s2 <- a
sw $s2, 100($fp) # b <- a
la $s3, 104($fp) # $s3 -> c
la $s4, 96($fp) # $s4 -> a
lw $s5, 96($fp) # $s5 <- a
sw $s5, 104($fp) # c <- a

• The code that has been changed is highlighted in red



MIPS code produced from la Pseudo-
Instruction (1 of 2)
• If the form of an la pseudo-instruction is:

la $s0, 100($fp)

• Then, SPIM will generate the following MIPS instruction to implement it:
addi $s0, $fp, 100

• For the following la pseudo-instruction:
la $s0, 65536($fp)

• SPIM will generate the following MIPS instructions to implement it:
lui $1, 1
add $s0, $fp, $1



MIPS code produced from la Pseudo-
Instruction (2 of 2)
• For the following la pseudo-instruction:

la $s0, 65540($fp)

• SPIM will generate the following MIPS instructions to implement it:
lui $1, 1
ori $1, $1, 4
add $s0, $fp, $1



MIPS code produced from lw Instruction

• If the form of an lw pseudo-instruction is:
lw $s0, 65540($fp)

• Then, SPIM will generate the following MIPS instructions to 
implement it:

lui $1, 1
addu $1, $1, $fp
lw $s0, 4($1)

• Note that even though lw is not a pseudo-instruction, SPIM may 
generate more than one instruction to implement it



Constraint on the Offset Field in la, lw, and sw
Instructions
• The MIPS la pseudo-instruction is able to generate more than one 

MIPS instruction in order to load the address of its second operand 
into a register
• The la pseudo-instruction is able to produce code even with an offset that is 

out of range for a 16-bit field

• For the lw or sw instruction to perform the same functionality 
without requiring more than one instruction, the memory address of 
the data that is being loaded or stored must be accessible through 
the 16-bit offset field
• This may limit the stack frame size accessible through an offset in the lw or sw

instructions



Apply Common Subexpression Elimination

• If we apply common subexpression elimination, we have:
la $s0, 100($fp) # $s0 -> b
la $s1, 96($fp) # $s1 -> a
lw $s2, 96($fp) # $s2 <- a (line 3)
sw $s2, 100($fp) # b <- a
la $s3, 104($fp) # $s3 -> c
la $s4, 96($fp) # $s4 -> a
lw $s5, 96($fp) # $s5 <- a
sw $s2, 104($fp) # c <- a (line 8)

• The code that has been changed is highlighted in red

• Note that in order to apply this optimization, the user variable a cannot be 
modified between line 3 and line 8 and also that register $s2 cannot be modified 
between the lw instruction in line 3 and the sw instruction in line 8



Apply Dead/Unreachable Code Elimination

• If we apply dead code elimination, we have:
lw $s2, 96($fp) # $s2 <- a
sw $s2, 100($fp) # b <- a
sw $s2, 104($fp) # c <- a



Assign Final Registers to the Resulting Code

• If we apply some register assignment algorithm – perhaps using graph 
coloring, we have:

lw $s0, 96($fp) # $s0 <- a
sw $s0, 100($fp) # b <- a
sw $s0, 104($fp) # c <- a

• Now eight lines of code has been optimized to three

• Now only one register is required

• This code is much more efficient than our initial straight-forward code



Example Three of Several Low-Level MIPS 
Optimizations with Global Variables
• Start with the following C program:

int a, b, c;
int main(void) {

b = a;
c = a;
…

}

• Straight-forward code generation will yield:
la $s0, _Global_b # $s0 -> b
la $s1, _Global_a # $s1 -> a
lw $s2, ($s1) # $s2 <- a
sw $s2, ($s0) # b <- a
la $s3, _Global_c # $s3 -> c
la $s4, _Global_a # $s4 -> a
lw $s5, ($s4) # $s5 <- a
sw $s5, ($s3) # c <- a



Comparing Example Three to Example Two

• The assembly code is nearly identical, but Example Three references 
the global variables by name whereas Example Two references the 
local variables through offsets off the $fp register

• In order to produce efficient optimized code, the $gp (global pointer) 
register has to be utilized to access global variable
• The $gp register will be initialized to point into the static data segment
• For maximum addressability, $gp would point in the middle of a 64K byte 

memory region
• For simplicity in our code, I will make $gp point to the beginning of the static data 

segment



Layout of Variables in the Static Data Segment

• There are three global int variables: a, b, and c

• They are laid out in memory in ascending locations

Global variable Offset in Data Segment

a 0

b 4

c 8



Low-Level MIPS Optimizations – Using the 
Offset Field in la & lw Instructions
• Using the $gp register and the offset field in lw instructions, we can convert:

la $s1, _Global_a # $s1 -> a
lw $s2, ($s1) # $s2 <- a

• Into:
la $gp, _Global_a # $gp -> static data segment
la $s1, 0($gp) # $s1 -> a
lw $s2, 0($gp) # $s2 <- a

• The code that has been changed is highlighted in red

• Register $gp should be loaded with the address of the static data segment only once at 
the beginning of main

• Note that in order to apply this optimization, $s1 cannot be modified between the la and 
the lw instructions

• The la instruction for $s1 is not removed yet because we don’t know if $s1 is used 
elsewhere



Apply Using the Offset Field in la & lw
Instructions
• If we apply using the offset field in la & lw instructions, we have:

la $gp, _Global_a # $gp -> static data segment
la $s0, 4($gp) # $s0 -> b
la $s1, 0($gp) # $s1 -> a
lw $s2, 0($gp) # $s2 <- a
sw $s2, ($s0) # b <- a
la $s3, 8($gp) # $s3 -> c
la $s4, 0($gp) # $s4 -> a
lw $s5, 0($gp) # $s5 <- a
sw $s5, ($s3) # c <- a

• The code that has been changed is highlighted in red



Apply Using the Offset Field in sw Instructions

• If we apply a similar transformation by using the offset field in sw
instructions, we have:

la $gp, _Global_a # $gp -> static data segment
la $s0, 4($gp) # $s0 -> b
la $s1, 0($gp) # $s1 -> a
lw $s2, 0($gp) # $s2 <- a
sw $s2, 4($gp) # b <- a
la $s3, 8($gp) # $s3 -> c
la $s4, 0($gp) # $s4 -> a
lw $s5, 0($gp) # $s5 <- a
sw $s5, 8($gp) # c <- a

• The code that has been changed is highlighted in red



Apply Common Subexpression Elimination

• If we apply common subexpression elimination, we have:
la $gp, _Global_a # $gp -> static data segment
la $s0, 4($gp) # $s0 -> b
la $s1, 0($gp) # $s1 -> a
lw $s2, 0($gp) # $s2 <- a (line 4)
sw $s2, 4($gp) # b <- a
la $s3, 8($gp) # $s3 -> c
la $s4, 0($gp) # $s4 -> a
lw $s5, 0($gp) # $s5 <- a
sw $s2, 8($gp) # c <- a (line 9)

• The code that has been changed is highlighted in red

• Note that in order to apply this optimization, the user variable a cannot be 
modified between line 4 and line 9 and also that register $s2 cannot be modified 
between the lw instruction in line 4 and the sw instruction in line 9



Apply Dead/Unreachable Code Elimination

• If we apply dead code elimination, we have:
la $gp, _Global_a # $gp -> static data segment
lw $s2, 0($gp) # $s2 <- a
sw $s2, 4($gp) # b <- a
sw $s2, 8($gp) # c <- a



Assign Final Registers to the Resulting Code

• If we apply some register assignment algorithm – perhaps using graph 
coloring, we have:

la $gp, _Global_a # $gp -> static data segment
lw $s0, 0($gp) # $s0 <- a
sw $s0, 4($gp) # b <- a
sw $s0, 8($gp) # c <- a

• Now eight lines of code has been optimized to three

• Now only one register is required

• This code is much more efficient than our initial straight-forward code


