advanced positioning technology

STEPPER MOTOR CONTROLLER

Model Number BSC101

THORLABS
THORLABS

About the Company
Thorlabs has been an active member of the Photonics community for over 15 years. We strive to be the ultimate resource for the photonics community—a place to find the products you need to enable your experiments, as well as the information you need to get your application working.

Thorlabs designs, develops, and manufactures building blocks for the photonics industry including equipment for opto-mechanics, motion control, nano-positioning, alignment, optical components, laser diodes, tunable lasers and vibration isolation systems. In addition to core photonics building blocks, we now provide system level solutions including complete OCT and imaging systems.

Trademarks
Windows is a trademark of Microsoft Corporation.
ActiveX is a trademark of Microsoft Corporation.
Visual Basic is a trademark of Microsoft Corporation.
LabVIEW is a trademark of National Instruments Corporation.
THORLABS is a registered trademark of Thorlabs Inc.

Product Warranty
Opto-Electronics, Control Electronics, Optics, and Nano-Positioning Product Lines.

Thorlabs offers a two year warranty on the above mentioned product lines, provided normal use and maintenance of the products and when properly handled and correctly installed.

Thorlabs shall repair or replace any defective or nonconforming product as detailed above. We ask that buyer contact Thorlabs for a Return Material Authorization number (RMA #) from our Customer Service/Returns department in order to most efficiently process the return and/or repair.

Products returned for repair that are not covered under warranty, a Thorlabs standard repair charge shall be applicable in addition to all shipping expenses. This repair charge will be quoted to the customer before the work is performed.

Revision History

<table>
<thead>
<tr>
<th>Issue No.</th>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100106</td>
<td>Initial Issue</td>
</tr>
<tr>
<td>2</td>
<td>170206</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>060406</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>220807</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>030608</td>
<td></td>
</tr>
</tbody>
</table>
Contents

1 For Your Safety ... 3
 Safety Information .. 3
 Warnings .. 4
 Declarations Of Conformity .. 4
 For Customers in Europe ... 4
 For Customers In The USA ... 4
 Waste Electrical and Electronic Equipment (WEEE) Directive .. 5
 Compliance ... 5
 Waste treatment on your own responsibility 6
 Ecological background .. 6

2 Overview and Setup .. 7
 Introduction ... 7
 Mechanical Installation .. 8
 Siting .. 8
 Environmental Conditions ... 9
 Electrical Installation ... 9
 Connecting To The Supply ... 9
 Rear Panel Connections ... 10
 Front Panel Controls and Indicators 11
 Installing APT Software .. 12
 Introduction .. 12
 Software Installation ... 12
 Connecting The Hardware .. 12
 Software Upgrades ... 13
 APT PC Software Overview ... 13
 Introduction .. 13
 APTUser Utility .. 14
 APT Config Utility .. 15
 APT Server (ActiveX Controls) 16
 Verifying Software Operation .. 18
 Initial Setup .. 18

3 Operation - Tutorial .. 19
 Introduction .. 19
 Select the Stage Type (Using APTConfig) 19
 Using the APT User Utility ... 21
 Homing Motors .. 23
 Moving to an Absolute Position 24
 Changing Motor Parameters .. 25
 Jogging ... 26
 Graphical Control Of Motor Positions (Point and Move) ... 27
 Setting Move Sequences ... 29
 Creating a Simulated Configuration Using APT Config 32
 Stage/Axis Tab ... 35
 Continued...
5 Software Reference

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>GUI Panel</td>
<td>36</td>
</tr>
<tr>
<td>Settings Panel</td>
<td>37</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Rear Panel Connector Pinout Details</td>
<td>47</td>
</tr>
<tr>
<td>Rear Panel Control IO Connector</td>
<td>47</td>
</tr>
<tr>
<td>Rear Panel Drive Channel Connectors</td>
<td>51</td>
</tr>
<tr>
<td>B Preventive Maintenance</td>
<td>52</td>
</tr>
<tr>
<td>Safety Testing</td>
<td>52</td>
</tr>
<tr>
<td>Fuses</td>
<td>52</td>
</tr>
<tr>
<td>Cleaning</td>
<td>53</td>
</tr>
<tr>
<td>C Specifications and Associated Products</td>
<td>54</td>
</tr>
<tr>
<td>Specifications</td>
<td>54</td>
</tr>
<tr>
<td>Associated Products</td>
<td>55</td>
</tr>
<tr>
<td>D Stepper Motor Operation - Background</td>
<td>56</td>
</tr>
<tr>
<td>How A Stepper Motor Works</td>
<td>56</td>
</tr>
<tr>
<td>General Principle</td>
<td>56</td>
</tr>
<tr>
<td>Positive and Negative Moves</td>
<td>57</td>
</tr>
<tr>
<td>Velocity Profiles</td>
<td>57</td>
</tr>
<tr>
<td>Positioning a Stage</td>
<td>57</td>
</tr>
<tr>
<td>General</td>
<td>57</td>
</tr>
<tr>
<td>Home position</td>
<td>58</td>
</tr>
<tr>
<td>Limit Switches</td>
<td>58</td>
</tr>
<tr>
<td>Minimum and Maximum Positions</td>
<td>59</td>
</tr>
<tr>
<td>Power Saving</td>
<td>59</td>
</tr>
<tr>
<td>Error Correction</td>
<td>60</td>
</tr>
<tr>
<td>Backlash correction</td>
<td>60</td>
</tr>
</tbody>
</table>
Chapter 1

For Your Safety

1.1 Safety Information

For the continuing safety of the operators of this equipment, and the protection of the
equipment itself, the operator should take note of the Warnings, Cautions and Notes
throughout this handbook and, where visible, on the product itself.

The following safety symbols may be used on the equipment:

⚠️ Warning, risk of danger. Refer to the handbook for details on this hazard.

⚡️ Warning, risk of electric shock. High voltages present

Equipotentiality (bonding) terminal

Functional (EMC) earth/ground terminal.

The following safety symbols may be used throughout the handbook:

⚠️ Warning. An instruction which draws attention to the risk of injury or death.

❗️ Caution. An instruction which draws attention to the risks of damage to the product,
process or surroundings.

⭐️ Note. Clarification of an instruction or additional information.
Chapter 1 For Your Safety

1.2 Warnings

- The unit must be connected only to an earthed fused supply of 110 to 230V.
- The Equipment, as described herein, is designed for use by personnel properly trained in the use and handling of mains powered electrical equipment. Only personnel trained in the servicing and maintenance of this equipment should remove its covers or attempt any repairs or adjustments.
- If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not operate the instrument outside its rated supply voltages or environmental range. In particular, excessive moisture may impair safety.
- This unit is intended for operation from a normal, single phase supply, in the temperature range 5° to 40°C, 20% to 80% RH.

1.3 Declarations Of Conformity

1.3.1 For Customers in Europe

This equipment has been tested and found to comply with the EC Directives 89/336/EEC 'EMC Directive' and 73/23/EEC 'Low Voltage Directive' as amended by 93/68/EEC.

Compliance was demonstrated by conformance to the following specifications which have been listed in the Official Journal of the European Communities:

- Safety EN61010: 2001 Installation Category II, Pollution Degree II.
- EMC EN61326: 1997

1.3.2 For Customers In The USA

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Changes or modifications not expressly approved by Thorlabs Ltd could void the user's authority to operate the equipment.
1.4 Waste Electrical and Electronic Equipment (WEEE) Directive

1.4.1 Compliance
As required by the Waste Electrical and Electronic Equipment (WEEE) Directive of the European Community and the corresponding national laws, Thorlabs offers all end users in the EC the possibility to return "end of life" units without incurring disposal charges.

This offer is valid for Thorlabs electrical and electronic equipment
- sold after August 13th 2005
- marked correspondingly with the crossed out "wheelie bin" logo (see Fig. 1)
- sold to a company or institute within the EC
- currently owned by a company or institute within the EC
- still complete, not disassembled and not contaminated

As the WEEE directive applies to self contained operational electrical and electronic products, this "end of life" take back service does not refer to other Thorlabs products, such as
- pure OEM products, that means assemblies to be built into a unit by the user (e. g. OEM laser driver cards)
- components
- mechanics and optics
- left over parts of units disassembled by the user (PCB's, housings etc.).

If you wish to return a Thorlabs unit for waste recovery, please contact Thorlabs or your nearest dealer for further information.
Chapter 1 For Your Safety

1.4.2 Waste treatment on your own responsibility
If you do not return an "end of life" unit to Thorlabs, you must hand it to a company
specialized in waste recovery. Do not dispose of the unit in a litter bin or at a public
waste disposal site.

1.4.3 Ecological background
It is well known that WEEE pollutes the environment by releasing toxic products
during decomposition. The aim of the European RoHS directive is to reduce the
content of toxic substances in electronic products in the future.

The intent of the WEEE directive is to enforce the recycling of WEEE. A controlled
recycling of end of life products will thereby avoid negative impacts on the
environment.
Chapter 2

Overview and Setup

2.1 Introduction

The BSC101 single channel APT Stepper Motor Controller is designed to drive larger framed 2-phase bipolar stepper motors, with and without encoder feedback, and can be used in a wide variety of single axis applications. These high power units deliver up to 48V/50W peak (25W average) drive power per channel and are compatible with most stepper driven nano-positioning actuators & stages in the Thorlabs range. To facilitate connection to third party actuators and motors, Thorlabs offers a breakout board (please see Appendix C for details). The unit combines the latest high speed digital signal processors (DSP) with low-noise analog electronics and ActiveX® software technology for effortless high resolution microstepping (25,600 steps per revolution) of a single axis. Additional axes can be driven by connecting one or more benchtop units via a standard USB hub. The apt stepper motor controller is supplied with a full suite of software support tools. An intuitive graphical instrument panel allows immediate control and visualization of the operation of the stepper controllers, and any other controllers that are installed in the system. See Chapter 4 for a full description of the apt system software.

Fig. 2.1 APT Single Channel Stepper Motor Controller (BSC101)
Stepper motors give excellent low speed performance and positioning stability compared with DC servo motors. A wide range of 2-phase bipolar stepper motors and associated actuators are commercially available, each with its own characteristics, such as step resolution, peak phase current or voltage, and lead screw pitch. For this reason the apt™ stepper unit operation is fully configurable (parameterized) with key settings exposed through the associated graphical interface panels.

Motor step resolution, and lead screw pitch can be set for a particular motor/actuator combination, phase currents can be limited to suitable peak powers as required, and limit switch configuration is accommodated through a flexible set of limit switch logic settings. Moreover, relative and absolute moves can be initiated with move profiles set using velocity profile parameters. Similarly, home sequences have a full set of associated parameters that can be adjusted for a particular stage or actuator. For simplicity of operation, the apt™ software incorporates pre-configured settings for each of the Thorlabs stages and actuators, while still exposing all parameters individually for use with other stepper motor driven systems.

For convenience and ease of use, adjustment of many key parameters is possible through direct interaction with the graphical panel. For example a move to the next position can be initiated by clicking directly on the position display and entering a new value (see the tutorial in Chapter 3 for further details). Furthermore, all such settings and parameters are also accessible through the ActiveX® programmable interfaces for automated alignment sequences.

The apt™ stepper unit also supports encoder feedback through dedicated quadrature encoded pulse (QEP) inputs, one for each channel of operation. Through conversion routines, the apt™ software is able to use this feedback signal to generate encoder position for access either through the GUI or via programmable interfaces for custom closed loop algorithms. A “built in” algorithm can be enabled to allow the stepper system to reach and maintain an encoded position through an iterative move sequence. Please see the handbook supplied with your linear encoded stage for further details.

In the remainder of this handbook, the Tutorial section (Chapter 3) provides a good initial understanding on using the unit, and the reference sections (Chapter 4) covers all operating modes and parameters in detail.

2.2 Mechanical Installation

2.2.1 Siting

The BSC101 is designed to be mounted free standing on a shelf, benchtop or similar surface.

Caution

When siting the unit, it should be positioned so as not to impede the operation of the rear panel power supply switch.

Ensure that proper airflow is maintained to the rear of the unit.
2.2.2 Environmental Conditions

Warning. Operation outside the following environmental limits may adversely affect operator safety.

<table>
<thead>
<tr>
<th>Location</th>
<th>Indoor use only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum altitude</td>
<td>2000 m</td>
</tr>
<tr>
<td>Temperature range</td>
<td>5°C to 40°C</td>
</tr>
<tr>
<td>Maximum Humidity</td>
<td>Less than 80% RH (non-condensing) at 31°C</td>
</tr>
</tbody>
</table>

To ensure reliable operation the unit should not be exposed to corrosive agents or excessive moisture, heat or dust.

If the unit has been stored at a low temperature or in an environment of high humidity, it must be allowed to reach ambient conditions before being powered up.

2.3 Electrical Installation

2.3.1 Connecting To The Supply

Warnings.

- The unit must be connected only to an earthed fused supply of 110 to 230V.
- Use only power supply cables supplied by Thorlabs, other cables may not be rated to the same current.
- The unit is shipped to the UK, Europe and the USA, with the appropriate power plug already fitted. When shipped to other territories the appropriate power plug must be fitted by the user. Cable identification is as follows:

<table>
<thead>
<tr>
<th>Color</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Live</td>
</tr>
<tr>
<td>Blue</td>
<td>Neutral</td>
</tr>
<tr>
<td>Green/Yellow</td>
<td>Earth/Ground</td>
</tr>
</tbody>
</table>

2.3.2 Fuses

Two T 3A/250V a.c. antisurge ceramic fuses are located on the back panel, one for the live feed and one for the neutral as follows:

<table>
<thead>
<tr>
<th>Fuse</th>
<th>Rating</th>
<th>Type</th>
<th>Fused Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>T 3A</td>
<td>ceramic; antisurge</td>
<td>Live feed</td>
</tr>
<tr>
<td>F2</td>
<td>T 3A</td>
<td>ceramic; antisurge</td>
<td>Neutral feed</td>
</tr>
</tbody>
</table>

When replacing fuses:

1) Switch off the power and disconnect the power cord before removing the fuse cover.

2) Always replace broken fuses with a fuse of the same rating and type.
Chapter 2 Overview and Setup

2.3.3 Rear Panel Connections

MOTOR DRIVE - Provides connection to the actuator. This connector provides all phase current drive and encoder feedback connections to drive a range of encoded and non-encoded stepper motors - see Section A.2.

CONTROL I/O - The ‘CONTROL I/O’ connector exposes a number of electrical signals useful for external control. It is possible to configure a particular controller to respond to trigger inputs, generate trigger outputs or both respond to and generate a trigger output - see Section 4.3.3. Motor jogging lines can be used to jog the motor in both forward and reverse directions from a remote handset (Jogging parameters (e.g. jog distance) are set via the GUI panel - see Section 4.3.1.).

USB - USB port for system communications. Note. The USB cable length should be no more than 3 metres unless a powered USB hub is being used.
2.4 Front Panel Controls and Indicators

![Front panel controls and indicators](image)

Power LED – Indicates that power is applied to the unit.

Enable button – Used to enable/disable channel functionality. The associated LED is lit when the channel is enabled. Disabling the channel allows the motor actuator to be operated manually.
Chapter 2 Overview and Setup

2.5 Installing APT Software

2.5.1 Introduction
When operating via a PC, direct user interaction with the Stepper motor controller is accomplished through intuitive graphical user interface panels (GUIs), which expose all key operating parameters and modes. The user can select multiple panel views displaying different information about a particular hardware unit. The multitasking architecture ensures that the graphical control panels always remain live, showing all current hardware activity.

2.5.2 Software Installation

\textbf{Caution.} Software must be installed BEFORE the controller is connected to your PC

The installation procedure is performed automatically.
1) Insert the CD into your PC.
2) Click the ‘Install Software’ hyperlink.

\textbf{Fig. 2.4 Install Software Hyperlink}

3) Follow the on-screen instructions.
If your install package does not start, run the file ‘Install.exe’, found on the root directory of the Software CD.
If you experience any problems when installing software, contact Thorlabs on +44 (0)1353 654440 and ask for Technical Support.

\textbf{Caution.} Some PC’s may have been configured to restrict access to the registry. If this is the case, the following registry keys must be set to allow write access by everyone:
\texttt{HKEY_LOCAL_MACHINE\SOFTWARE\THORLABS\APT\SERVER}
\texttt{HKEY_LOCAL_MACHINE\SOFTWARE\THORLABS\APT\USER}
For further information, consult your system administrator.

2.5.3 Connecting The Hardware
1) Connect the motor actuators to the Controller unit.
2) Connect the Controller unit to the power supply and switch ‘ON’.
3) Connect the Controller unit to your PC.
\textbf{(Note.} The USB cable length should be no more than 3 metres unless a powered
USB hub is being used). Windows™ should detect the new hardware. Wait while Windows™ installs the drivers for the new hardware - see the Getting Started guide for more information.

4) Run the APTUser utility
 Start/Programs/Thorlabs/APT/APT User.

5) Your APT Motor Controller is now ready for use.
 See the Getting Started Guide supplied with the controller, or Chapter 3 of this manual, for a brief tutorial on operation of the unit.

2.5.4 Software Upgrades
Thorlabs operate a policy of continuous product development and may issue software upgrades as necessary.
Detailed instructions on installing upgrades are included on the APT Software CD ROM.

2.6 APT PC Software Overview

2.6.1 Introduction
As a member of the APT range of controllers, the BSC101 stepper controller shares many of the associated software benefits. This includes USB connectivity (allowing multiple units to be used together on a single PC), fully featured Graphical User Interface (GUI) panels, and extensive software function libraries for custom application development.

The APT software suite supplied with all APT controllers, including the BSC101 stepper controller, provides a flexible and powerful PC based control system both for users of the equipment, and software programmers aiming to automate its operation.

For users, the APTUser (see Section 2.6.2.) and APTConfig (see Section 2.6.3.) utilities allow full control of all settings and operating modes enabling complete 'out-of-box' operation without the need to develop any further custom software. Both utilities are built on top of a sophisticated, multi-threaded ActiveX ‘engine’ (called the APT server) which provides all of the necessary APT system software services such as generation of GUI panels, communications handling for multiple USB units, and logging of all system activity to assist in hardware trouble shooting. It is this APT server ‘engine’ that is used by software developers to allow the creation of advanced automated positioning applications very rapidly and with great ease. The APT server is described in more detail in Section 2.6.4.

Aside
ActiveX®, a Windows®-based, language-independent technology, allows a user to quickly develop custom applications that automate the control of APT system hardware units. Development environments supported by ActiveX® technology include Visual Basic®, LabView™, Borland C++ Builder, Visual C++, Delphi™,
and many others. ActiveX® technology is also supported by .NET development environments such as Visual Basic.NET and Visual C#.NET.

ActiveX controls are a specific form of ActiveX technology that provide both a user interface and a programming interface. An ActiveX control is supplied for each type of APT hardware unit to provide specific controller functionality to the software developer. See Section 2.6.4. for further details.

2.6.2 APTUser Utility

The APTUser application allows the user to interact with a number of APT hardware control units connected to the host PC. This program displays multiple graphical instrument panels to allow multiple APT units to be controlled simultaneously.

All basic operating parameters can be altered and, similarly, all operations (such as motor moves) can be initiated. Settings and parameter changes can be saved and loaded to allow multiple operating configurations to be created and easily applied.

For many users, the APTUser application provides all of the functionality necessary to operate the APT hardware without the need to develop any further custom software. For those who do need to further customise and automate usage of the controller (e.g. to implement a positioning algorithm), this application illustrates how the rich functionality provided by the APT ActiveX server is exposed by a client application. The complete Visual Basic source project is provided as a useful aid to software developers.

Use of the APT User utility is covered in the PC tutorial (Chapter 3) and in the APTUser online help file, accessed via the F1 key when using the APTUser utility.
2.6.3 APT Config Utility

There are many system parameters and configuration settings associated with the operation of the APT Server. Most can be directly accessed using the various graphical panels, however there are several system wide settings that can be made "off-line" before running the APT software. These settings have global effect; such as switching between simulator and real operating mode, associating mechanical stages to specific motor actuators and incorporation of calibration data.

The APTConfig utility is provided as a convenient means for making these system wide settings and adjustments. Full details on using APTConfig are provided in the online help supplied with the utility.

Use of the APT Config utility is covered in the PC tutorial (Chapter 3) and in the APTConfig online help file, accessed via the F1 key when using the APTConfig utility.
2.6.4 APT Server (ActiveX Controls)

ActiveX Controls are re-usable compiled software components that supply both a graphical user interface and a programmable interface. Many such Controls are available for Windows applications development, providing a large range of re-usable functionality. For example, there are Controls available that can be used to manipulate image files, connect to the internet or simply provide user interface components such as buttons and list boxes.

With the APT system, ActiveX Controls are deployed to allow direct control over (and also reflect the status of) the range of electronic controller units, including the BSC101 stepper motor controller. Software applications that use ActiveX Controls are often referred to as ‘client applications’. Based on ActiveX interfacing technology, an ActiveX Control is a language independent software component. Consequently ActiveX Controls can be incorporated into a wide range of software development environments for use by client application developers. Development environments supported include Visual Basic, Labview, Visual C++, C++ Builder, HPVEE, Matlab, VB.NET, C#.NET and, via VBA, Microsoft Office applications such as Excel and Word.

Consider the ActiveX Control supplied for the BSC101 APT stepper controller unit.

This Control provides a complete user graphical instrument panel to allow the motor unit to be manually operated, as well as a complete set of software functions (often called methods) to allow all parameters to be set and motor operations to be automated by a client application. The instrument panel reflects the current operating state of the controller unit to which it is associated (e.g. such as motor position). Updates to the panel take place automatically when a user (client) application is making software calls into the same Control. For example, if a client application instructs the associated stepper motor Control to move a motor, the progress of that move is reflected automatically by changing position readouts on the graphical interface, without the need for further programming intervention.
The APT ActiveX Controls collection provides a rich set of graphical user panels and programmable interfaces allowing users and client application developers to interact seamlessly with the APT hardware. Each of the APT controllers has an associated ActiveX Control and these are described fully in system online help or the handbooks associated with the controllers. Note that the APTUser and APTConfig utilities take advantage of and are built on top of the powerful functionality provided by the APT ActiveX Server (as shown in Fig. 2.5).

Refer to the main APT Software online help file, APTServer.hlp, for a complete programmers guide and reference material on using the APT ActiveX Controls collection. Additional software developer support is provided by the APT Support CD supplied with every APT controller. This CD contains a complete range of tutorial samples and coding hints and tips, together with handbooks for all the APT controllers.
2.7 Verifying Software Operation

2.7.1 Initial Setup
1) Install the APT software as detailed in Section 2.5.
2) Connect the driver to the stepper actuators or the relevant axes of the associated stages (see Section 2.3.).
3) Run the APTUser utility and check that the Graphical User Interface (GUI) panel appears and is active.

4) Click the 'Ident' button. The LED on the front panel of the controller flashes. This is useful in multi-channel systems for identifying which driver unit is associated with which GUI.
5) Click the jog buttons on the GUI panel and check that the motor or axis connected to the controller moves. The position display for the associated GUI should increment and decrement accordingly.

Follow the tutorial steps described in Chapter 3 for further verification of operation.

Note. The ‘APT Config’ utility can be used to set up simulated hardware configurations and place the APT Server into simulator mode. In this way it is possible to create any number and type of simulated (virtual) hardware units in order to emulate a set of real hardware. This is a particularly useful feature, designed as an aid to application program development and testing. Any number of 'virtual' control units are combined to build a model of the real system, which can then be used to test the application software offline.

If using real hardware, ensure that Simulator Mode is disabled. If using a simulated setup, enable Simulator Mode and set up a 'Simulated Configuration' - see Section 3.10. or the APTConfig helpfile for detailed instructions.
Chapter 3

Operation - Tutorial

3.1 Introduction

The following brief tutorial guides the user through a typical series of moves and parameter adjustments performed using the PC based APT software. It assumes that the unit is electrically connected as shown in Section 2.3.3. and that the APT Software is already installed - see Section 2.5.2. For illustration purposes, it also assumes that a DRV113 motor is connected to the ‘Motor’ connector on the rear panel.

3.2 Select the Stage Type (Using APTConfig)

To ensure that a particular stage is driven properly by the system, a number of parameters must first be set. These parameters relate to the physical characteristics of the stage being driven (e.g. min and max positions, leadscrew pitch, homing direction etc.).

To assist in setting these parameters correctly, it is possible, using the APT Config utility, to associate a specific stage type and axis with the motor controller channel. Once this association has been made, the APT server applies automatically, suitable default parameter values on boot up of the software.

Note. Even if a stage type and axis has been associated with the controller channel, it is still possible to alter these parameters if required, (e.g. for a custom stage type not selectable using the APT Config utility).

1) Shut down all applications using the APT server (e.g. APT User or your own custom application).

2) Run the APT Config utility - Start/All Programs/Thorlabs/APT Config/APT Config.
3) From the 'APT Configuration Utility' window, click the 'Stage' tab.

![APT Configuration Utility - Stage Tab](image)

4) In the 'Stepper' field, select the serial number of the stepper motor controller to be configured (this number can be found on the rear panel of the BSC101 unit).

5) For the BSC101 Stepper controller, the 'Channel' field defaults to '1'.

6) In the 'Stage' field, select the 'DRV113' actuator type from the list displayed (assuming a 25mm travel DRV113 actuator is connected).

7) Click the 'Add Stage Association' button.

8) Shut down the APTConfig utility and start the APTUser utility to verify the DRV113 actuator settings just associated - see Section 3.3.

 This is necessary because the server reads in the stage and controller information on boot up.

See the APT Config utility on line help for further information.
3.3 Using the APT User Utility

The APT User.exe application allows the user to interact with any number of APT hardware control units connected to the PC USB Bus (or simulated via the APTConfig utility). This program allows multiple graphical instrument panels to be displayed so that multiple APT units can be controlled. All basic operating parameters can be set through this program, and all basic operations (such as motor moves) can be initiated. Hardware configurations and parameter settings can be saved to a file, which simplifies system set up whenever APT User is run up.

Fig. 3.2 Typical APT User Screen

1) Run the APT User program - Start/All Programs/Thorlabs/APT User/APT User.
2) Notice how the DRV113 actuator type, selected in Section 3.2, is displayed in the ‘Settings’ window. See Section 3.11 and Section 4.3 for further details on the parameter values shown in the ‘Settings’ display.

![Motor Controller Software GUI](image)

Fig. 3.3 Motor Controller Software GUI

The APT User utility will be used throughout the rest of this tutorial to interface with the stepper motor controller.
3.4 Homing Motors

Homing the motor moves the actuator to the home limit switch and resets the internal position counter to zero. The limit switch provides a fixed datum that can be found after the system has been powered up.

1) Click the ‘Home’ button. Notice that the led in the button lights to indicate that homing is in progress and the displayed position for both channels counts down to 000.000, i.e the home position.

2) When homing is complete, the ‘Homed’ LED is lit as shown above.

See Appendix D, Section D.2.2. for background information on the home position.
3.5 Moving to an Absolute Position

Absolute moves are measured in real world units (e.g. millimetres), relative to the Home position.
1) Click the position display.

2) Enter 3.0 into the pop up window
3) Click ‘OK’. Notice that the position display counts up to 003.000 to indicate a move to the absolute position 3.00mm.

Fig. 3.5 Absolute Position Popup Window
3.6 Changing Motor Parameters

Moves are performed using a trapezoidal velocity profile (see Appendix D, Section D.1.3.). The velocity settings relate to the maximum velocity at which a move is performed, and the acceleration at which the motor speeds up from zero to maximum velocity.

1) On the GUI panel, click the ‘Settings’ button (bottom right hand corner of the display) to display the Settings panel.

![Fig. 3.6 Settings Panel - Move/Jogs Tab](image)

2) Select the Move/Jogs tab as shown in Fig. 3.6.

3) In the ‘Moves’ field, change the parameters as follows:
 - ‘Max. Vel’ - ‘2.5’
 - ‘Accn/Dec’ - ‘0.5’
 Note. In current versions of software, the ‘Min Vel’ parameter is locked at zero and cannot be adjusted.

4) Click ‘OK’ to save the settings and close the window.

5) Any further moves initiated on channel 1 will now be performed at a maximum velocity of 2.5mm per second, with an acceleration of 0.5mm/sec/sec.
3.7 Jogging

During PC operation, the motor actuators are jogged using the GUI panel arrow keys. There are two jogging modes available, ‘Single Step’ and ‘Continuous’. In ‘Single Step’ mode, the motor moves by the step size specified in the Step Distance parameter. If the jog key is held down, single step jogging is repeated until the button is released - see Fig. 3.7. In ‘Continuous’ mode, the motor actuator will accelerate and move at the jog velocity while the button is held down.

1) On the GUI panel, click the ‘Settings’ button to display the Settings panel.

![Fig. 3.7 Settings Panel - Move/Jogs Tab]

2) Select the Move/Jogs tab as shown in Fig. 3.7.
3) In the ‘Jogs’ field, enter parameters as follows:
 ‘Max. Vel’ - ‘1’
 ‘Accn/Dec’ - ‘2’
 Note. In current versions of software, the ‘Min Vel’ parameter is locked at zero and cannot be adjusted.
 ‘Jogging’ - ‘Single Step’
 ‘Stopping’ - ‘Profiled’
4) ‘Step Distance’ - ‘0.05’
5) Click ‘OK’ to save the settings and close the window.
6) Click the Jog Arrows on the GUI panel to jog the motor. Notice that the position display increments 0.05 every time the button is clicked.
3.8 Graphical Control Of Motor Positions (Point and Move)

The GUI panel display can be changed to a graphical display, showing the position of the motor channel(s). Moves to absolute positions can then be initiated by positioning the mouse within the display and clicking.

To change the panel view to graphical view, right click in the screen and select ‘Graphical View’.

Consider the display shown above for a BSC101 Stepper Motor Controller.

The right hand display shows the channel and motor unit parameters; i.e. controller unit type and serial number, associated stage and actuator type, minimum and maximum positions, current position, units per grid division and cursor position. All units are displayed in real world units, either millimetres or degrees.

Note. For single channel units such as the BSC101, the Channel 2 parameters are greyed out.

The left hand display shows a circle, which represents the current position of the motor associated with the specified controller (absolute position data is displayed in the ‘Chan Pos’ field).

The vertical divisions relate to the travel of the stage/actuator associated with the controller (the stage/actuator is selected in the ‘APT Config’ utility). For example, the screen shot above shows the parameters for a 25mm travel DRV113 motor actuator. The graph shows 5 divisions in the X axis, which relates to 5mm of travel per division (25mm in total).

The graphical panel has two modes of operation, ‘Jog’ and ‘Move’, which are selected by clicking the buttons at the bottom right of the screen.
Chapter 3 Operation - Tutorial

Move Mode
When ‘Move’ is selected, the motors move to an absolute position which corresponds to the position of the cursor within the screen.

To specify a move:
1) Position the mouse within the window. For reference, the absolute motor position values associated with the mouse position is displayed in the ‘Cursor Position field.
2) Click the left hand mouse button to initiate the move.

Jog Mode
When ‘Jogging’ mode is selected, the motors are jogged each time the left mouse button is clicked.

The Jog direction corresponds to the position of the cursor relative to the circle (current motor position), e.g. if the cursor is to the left of the circle the motor will jog left. The Jog Step size is that selected in the Settings panel - see Section 4.3.

Stop
To stop the move at any time, click the ‘Stop’ button.

Returning to Panel View
To return to panel view, right click in the graphical panel and select ‘Panel View’.
3.9 Setting Move Sequences

This section explains how to set move sequences, allowing several positions to be visited without user intervention.

For details on moving to absolute positions initiated by a mouse click – see Section 3.10.

1) From the Motor GUI Panel, select ‘Move Sequencer’ tab to display the Move Sequencer window.

![Fig. 3.9 Move Sequencer Window](image)

2) Right click, in the move data field to display the pop up menu.

![Fig. 3.10 Move Sequencer Pop Up Menu](image)
3) Select 'New' to display the 'Move Editor' panel.

Move data is entered/displayed as follows:

- **Dist/Pos**: the distance to move from the current position (if 'Relative' is selected) or the position to move to (if 'Absolute' is selected).

- **Dwell Time**: after the move is performed, the system can be set to wait for a specified time before performing the next move in the sequence. The Dwell time is the time to wait (in milliseconds).

- **Return**: if checked, the system will move to the position specified in the Dist/Pos field, wait for the specified Dwell time, and then return to the original position.

- **Min Vel**: **Acc**: and **Max Vel**: the velocity profile parameters for the move.

Note: In current versions of software, the 'Min Vel' parameter is locked at zero and cannot be adjusted.

The motor accelerates at the rate set in the Acc field up to the speed set in the Max Vel field. As the destination approaches, the motor decelerates again to ensure that there is no overshoot of the position.

4) Enter the required move data into the Move Editor and click OK. The move data is displayed in the main window as shown below.
5) Repeat step 4 as necessary to build a sequence of moves. Move data can be copied, deleted, cut/pasted and edited by right clicking the data line(s) and selecting the appropriate option in the pop up menu (shown below).

Fig. 3.13 Pop Up Options

6) To run a single line of data, right click the appropriate data and select ‘Run’ from the pop up menu (shown above).

7) To run the entire sequence, click the ‘Run’ button (shown below). A Home move can also be performed from this panel by clicking the ‘Home’ button.

Fig. 3.14 Home and Run Buttons

8) To save data to a file, or load data from a previously saved file, click the ‘Save’ or ‘Load’ button and browse to the required location.
3.10 Creating a Simulated Configuration Using APT Config

The 'APT Config' utility can be used to set up simulated hardware configurations and place the APT Server into simulator mode. In this way it is possible to create any number and type of simulated (virtual) hardware units in order to emulate a set of real hardware. This is a particularly useful feature, designed as an aid learning how to use the APT software and as an aid to developing custom software applications ‘offline’.

Any number of ‘virtual’ control units can be combined to emulate a collection of physical hardware units. For example, an application program can be written, then tested and debugged remotely, before running with the hardware.

To create a simulated configuration proceed as follows:

1) Run the APT Config utility - Start/All Programs/Thorlabs/APT/APT Config.
2) Click the ‘Simulator Configuration’ tab.
3) Enter ‘LAB1’ in the Configuration Names field.

![APT Configuration Utility - Simulator Configuration Tab](image)

Fig. 3.15 APT Configuration Utility - Simulator Configuration Tab
4) In the 'Simulator' field, check the 'Enable Simulator Mode' box. The name of the most recently used configuration file is displayed in the 'Current Configuration' window.

5) In the 'Control Unit' field, select '1 Ch Stepper Driver (BSC101)'.

BSC101 Stepper Motor Controller

4) In the 'Simulator' field, check the 'Enable Simulator Mode' box. The name of the most recently used configuration file is displayed in the 'Current Configuration' window.

![APT Configuration Utility](image1)

5) In the 'Control Unit' field, select '1 Ch Stepper Driver (BSC101)'.

![APT Configuration Utility](image2)
Chapter 3 Operation - Tutorial

6) Enter a 6 digit serial number.

Note. Each physical APT hardware unit is factory programmed with a unique 8 digit serial number. In order to simulate a set of ‘real’ hardware the Config utility allows an 8 digit serial number to be associated with each simulated unit. It is good practice when creating simulated configurations for software development purposes to use the same serial numbers as any real hardware units that will be used. Although serial numbers are 8 digits (as displayed in the ‘Load Configuration Details’ window, the first two digits are added automatically and identify the type of control unit.

The prefixed digits relating to the BSC101 stepper controller are:
40xxxxxx - Benchtop APT Single Channel Stepper Motor Controller

7) Click the 'Add' button.

8) Repeat items (1) to (7) as required. (A unit can be removed from the configuration by selecting it in the ‘Loaded Configuration Details’ window and clicking the ‘Remove’ button or by right clicking it and selecting the ‘Remove’ option from the pop up window).

9) Enter a name into the 'Configuration Names' field.

10) Click 'Save'.

11) Click 'Set As Current' to use the configuration.
3.11 Stage/Axis Tab

This tab contains a number of parameters which are related to the physical characteristics of the particular stage or actuator being driven. They need to be set accordingly such that a particular stage is driven properly by the system.

Fig. 3.16 Stage/Axis Tab

These parameters were set automatically when the DRV113 actuator was selected using the APTConfig utility in Section 3.2. The APT server automatically applied suitable defaults for the parameters on this tab during boot up of any client software such as APTUser. These parameters should not be altered for pre-defined Thorlabs stages and actuators selected using APT Config, as it may adversely affect the performance of the stage.

For custom stage types not available using the APT Config utility, the stage details must be entered manually.

Individual parameters are described in Section 4.3.
Chapter 4

Software Reference

4.1 Introduction

This chapter gives an explanation of the parameters and settings accessed from the APT software running on a PC.

4.2 GUI Panel

The following screen shot shows the graphical user interface (GUI) displayed when accessing the stepper controller using the APTUser utility.

Fig. 4.1 Motor Controller Software GUI

Note. The serial number of the BSC101 controller associated with the GUI panel, the APT server version number, and the version number (in brackets) of the embedded software running on the unit, are displayed in the top right hand corner. This information should always be provided when requesting customer support.

Jog - used to increment or decrement the motor position. When the button is clicked, the motor is driven in the selected direction at the jog velocity one step per click. The step size and jog velocity parameters are set in the 'Settings' panel (see Section 4.3.).

Travel - displays the range of travel (in millimeters or degrees) of the motor.

Moving - lit when the motor is in motion.
Enable - applies power to the motor. With the motor enabled, the associated Channel LED on the front panel is lit.

Digital display - shows the position (in millimetres or degrees) of the motor. The motor must be 'Homed' before the display will show a valid position value, (i.e. the displayed position is relative to a physical datum, the limit switch).

Home - sends the motor to its 'Home' position - see Appendix D Section D.2.2. The LED in the button is lit while the motor is homing.

Homed - lit when the motor has previously been 'Homed' (since power up).

Stop - halts the movement of the motor.

Limit switches - the LEDs are lit when the associated limit switch has been activated - see Appendix D Section D.2.3. for further details on limit switches.

Settings display - shows the following user specified settings:

Driver - the type of control unit associated with the specified channel.
Stage - the stage type and axis associated with the specified channel.
Calib File - the calibration file associated with the specified channel.

See the APTConfig utility helpfile for more details on assigning and using calibration files.

Min/Max V - the minimum velocity at which a move is initiated, and the maximum velocity at which the move is performed. Values are displayed in real world units (mm/s or degrees/s), and can be set via the 'Settings' panel (see Section 4.3.).

Accn - the rate at which the velocity climbs to, and slows from, maximum velocity, displayed in real world units (mm/s/s or degrees/s/s). The acceleration can be set via the 'Settings' panel (see Section 4.3.) and is used in conjunction with the Min/Max velocity settings to determine the velocity profile of a motor move. See Appendix D Section D.1.3. for more information on velocity profiles.

Jog Step Size - the size of step (in mm or degrees) taken when the jog signal is initiated. The step size can be set either via the Settings panel or by calling the SetJogStepSize method.

Settings button - Displays the 'Settings' panel, which allows the motor drive’s operating parameters to be entered - see Section 4.3.

Ident - when this button is pressed, the LED (on the front panel of the unit) associated with the selected channel will flash for a short period.

Active - lit when the unit is operating normally and no error condition exists.

Error - lit when a fault condition occurs.

4.3 Settings Panel

When the 'Settings' button on the GUI panel is clicked, the 'Settings' window is displayed. This panel allows motor operation parameters such as move/jog velocities, and stage/axis information to be modified. Note that all of these parameters have
programmable equivalents accessible through the ActiveX methods and properties on this Control (refer to the Programming Guide in the APTServer helpfile for further details and to Section 2.6.4. for an overview of the APT ActiveX controls). The various parameters are described below.

4.3.1 Moves/Jogs tab

![Fig. 4.2 Stepper Motor Controller - Move/Jog Settings]

Moves

Moves can be initiated via the GUI panel by entering a position value after clicking on the position display box (see Section 3.5.) or by calling a software function (see the APTServer helpfile). The following settings determine the velocity profile of such moves, and are specified in real world units, millimetres or degrees.

- **Velocity Profile** (specified in real world units, millimetres or degrees).
- **MinVel** - In current versions of software the ‘Min Vel’ parameter is locked at zero and cannot be adjusted.
- **MaxVel** - the maximum velocity at which to perform a move.
- **Accn/Dec** - the rate at which the velocity climbs from zero to maximum, and slows from maximum to zero.

Note. Under certain velocity parameter and move distance conditions, the maximum velocity may never be reached (i.e. the move comprises an acceleration and deceleration phase only).

Jogs

Jogs are initiated by using the ‘Jog’ keys on the GUI panel (see Section 3.7.), or via a jog handset connected to the input logic pins exposed on the rear panel Control IO connector (see Appendix A).

- **Velocity Profile** (specified in real world units, millimetres or degrees)
MinVel - In current versions of software the ‘Min Vel’ parameter is locked at zero and cannot be adjusted.

MaxVel - the maximum velocity at which to perform a jog

Accn/Dec - the rate at which the velocity climbs from minimum to maximum, and slows from maximum to minimum.

Operating Modes

Jogging - The way in which the motor moves when a jog command is received (i.e. handset button pressed or GUI panel button clicked).

There are two jogging modes available, ‘Single Step’ and ‘Continuous’. In ‘Single Step’ mode, the motor moves by the step size specified in the Step Distance parameter. If the jog key is held down, single step jogging is repeated until the button is released - see Fig. 4.3. In ‘Continuous’ mode, the motor actuator will accelerate and move at the jog velocity while the button is held down.

Single Step mode

![Single Step mode](image)

Continuous mode

![Continuous mode](image)

Fig. 4.3 Jog Modes

Single Step - the motor moves by the step size specified in the Step Distance parameter.

Continuous - the motor continues to move until the jog signal is removed (i.e. jog button is released).
Stopping - the way in which the jog motion stops when the demand is removed.

Immediate - the motor stops quickly, in a non-profiled manner

Profiled - the motor stops in a profiled manner using the jog Velocity Profile parameters set above.

Step Distance - The distance to move when a jog command is initiated. The step size is specified in real world units (mm or degrees dependent upon the stage).

Backlash Correction - The system compensates for lead screw backlash during reverse direction moves, by moving passed the demanded position by a specified amount, and then reversing. This ensures that positions are always approached in a forward direction. The Backlash Correction Distance is specified in real world units (millimeters or degrees). To remove backlash correction, this value should be set to zero.
4.3.2 Stage/Axis tab

Note. This tab contains a number of parameters which are related to the physical characteristics of the particular stage being driven. They need to be set accordingly such that a particular stage is driven properly by the system.

For Thorlabs stages, the APT Config utility can be used to associate a specific stage and axis type with the motor channel (refer to the APT Config helpfile for further details on how to associate a stage and axis). Once this association has been made, the APT server will automatically apply suitable defaults for the parameters on this tab during boot up of the software. These parameters should not be altered for pre-defined Thorlabs stages selected using APT Config, as it may adversely affect the performance of the stage.

For custom stage types not available using the APT Config utility, the stage details must be entered manually. Individual parameters are described in the following paragraphs.

Stage and Axis Type - For Thorlabs stages, the stage type is displayed automatically once the axis has been associated using the APTConfig utility. For third party stages, the display shows 'Unknown'.

Caution. Extreme care must be taken when modifying the stage related settings that follow. Some settings are self-consistent with respect to each other, and illegal combinations of settings can result in incorrect operation of the physical motor/stage combination being driven. Consult Thorlabs for advice on settings for stage/actuator types that are not selectable via the APTConfig utility.
Chapter 4 Software Reference

Min Pos - the stage/actuator minimum position (typically zero).
Max Pos - the stage/actuator maximum position.
Pitch - the pitch of the motor lead screw (i.e. the distance (in millimetres or degrees) travelled per revolution of the leadscrew).
Units - the ‘real world’ positioning units (mm or degrees).

Homing
When homing, a stage typically moves in the reverse direction, (i.e. towards the reverse limit switch). The following settings allow support for stages with both Forward and Reverse limits.

Note. Typically, the following two parameters are set the same, i.e. both Forward or both Reverse.

Direction - the direction sense to move when homing, either Forward or Reverse.
Limit Switch - The hardware limit switch associated with the home position, either Forward HW or Reverse HW.
Zero Offset - the distance offset (in mm or degrees) from the limit switch to the Home position.
Velocity - the maximum velocity at which the motors move when Homing.
For further information on the home position, see Section D.2.2.

Hardware Limit Switches

Note. The minimum velocity and acceleration/deceleration parameters for a home move are taken from the existing move velocity profile parameters.

The operation of the limit switches is inherent in the design of the associated stage or actuator. The following parameters notify the system to the action of the switches when contact is made. Select Rev Switch or Fwd Switch as required, then select the relevant operation.

Switch Makes - The switch closes on contact
Switch Breaks - The switch opens on contact
Ignore/Absent - The switch is missing, or should be ignored.
Motor

These parameters are used to set the 'resolution' characteristics of the stepper motor connected to the selected channel. The resolution of the motor, combined with other characteristics (such as lead screw pitch) of the associated actuator or stage, determines the overall resolution.

Steps Per Rev - The number of full steps per revolution of the stepper motor (minimum '1', maximum '10000').

Gearbox Ratio - The ratio of the gearbox. For example, if the gearbox has a reduction ratio of X:1 (i.e. every 1 turn at the output of the gearbox requires X turns of the motor shaft) then the Gearbox Ratio value is set to X. (minimum '1', maximum '1000').

Notes.
- The ‘Steps Per Rev’ and ‘Gearbox Ratio’ parameters, together with the ‘Pitch’ and ‘Units’ parameters are used to calculate the calibration factor for use when converting real world units to microsteps. However, the ‘Steps Per Rev’ parameter is entered as full steps, not microsteps. The system automatically applies a factor of 128 microsteps per full step.
- The stepper motors used on the majority of Thorlabs stages/actuators have 200 full steps per rev and no gearbox fitted. For these motors the Steps Per Rev and Gearbox Ratio parameters have values of 200 and 1 respectively.
- The correct default values for Steps Per Rev and Gearbox Ratio are applied automatically when the APTConfig.exe utility is used to associate a specific stage or actuator type with a motor channel. See the APTConfig helpfile and the tutorial Section 3.2. for more details.
4.3.3 Advanced Tab

Fig. 4.5 Advanced Settings

Triggering

It is possible to configure a particular controller to respond to trigger inputs, generate trigger outputs or both respond to and generate a trigger output. When a trigger input is received, the unit can be set to initiate a move (relative, absolute or home). Similarly the unit can be set to generate a trigger output signal when instructed to move via a software (USB) command. For those units configured for both input and output triggering, a move can be initiated via a trigger input while at the same time, a trigger output can be generated to initiate a move on another unit.

The trigger settings can be used to configure multiple units in a master - slave set up, thereby allowing multiple channels of motion to be synchronized. Multiple moves can then be initiated via a single software or hardware trigger command.

Mode

The *Mode* parameter sets the trigger mode for the associated channel.

- **Disabled** - triggering operation is disabled
- **Trig In** - a move (specified using the *Move Type* parameter below) is initiated on the specified channel when a trigger input signal (i.e. rising edge) is received on the Trig In pin of the rear panel CONTROL IO D-type connector - see Section A.1. for pin out details.
- **Trig In/Out** - As for Trig In, but now a trigger output signal will also be generated on the Trig Output pin when the move begins - see Section A.1. for pin out details.
- **Trig Out** - A trigger output signal is generated on the Trig Out pin when a move (relative, absolute or home) is initiated via software (either through the GUI panel or ActiveX method call).
Move Type

The *Move Type* parameter determines the type of move to be initiated on the associated channel when a trigger input signal is detected on the Trig In or Trig Out connector.

Relative - triggered relative move. Relative move distance and velocity profile parameters can be set prior to triggering using the SetRelMoveDist and SetVelParams methods respectively.

Absolute - triggered absolute move. Absolute move position and velocity profile parameters can be set prior to triggering using the SetAbsMovePos and SetVelParams methods respectively.

Home - triggered home sequence. Homing parameters can be set prior to triggering using the SetHomeParams method.

For example, consider the following diagram:

![Fig. 4.6 Typical Triggering Set Up](image-url)
When the move command is received via the USB link, the motor associated with unit A starts to move by the specified relative distance. Unit A also sends a trigger signal to Unit B. Unit B has been set to 'Trig In', so on receipt of the trigger from unit A, the associated motor also starts to move.

Phase Powers

The BSC101 stepper motor controller is designed to vary the phase powers (current) in the motor coils depending on the operating state of the motor - moving or stationary. Typically, when a stepper motor is at rest it is advisable to reduce the phase (holding) currents so that the motor does not overheat. When moving, these phase currents are boosted to provide sufficient motor torque and minimise the possibility of stalling (missed steps).

The values are entered as a percentage of full power.

Note. The default values applied by the software have been selected based on the type of stage or actuator associated with the motor drive via the APTConfig utility. Modify these values with caution (particularly the rest power) as the risk of damage to the motor due to overheating is significant.
Appendix A

Rear Panel Connector Pinout Details

A.1 Rear Panel Control IO Connector

The ‘CONTROL I/O’ connector exposes a number of electrical signals useful for external control. It is possible to configure a particular controller to respond to trigger inputs, generate trigger outputs or both respond to and generate a trigger output - see Section 4.3.3. Motor jogging lines can be used to jog the motor in both forward and reverse directions from a remote handset (Jogging parameters (e.g. jog distance) are set via the GUI panel - see Section 4.3.1.).

The pin functions are detailed in Fig. A.1.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Return</th>
<th>Pin</th>
<th>Description</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User 5V I/O</td>
<td>9</td>
<td>9</td>
<td>User 0V</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>* Jog forwards</td>
<td>9</td>
<td>10</td>
<td>* Jog backwards</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Not Used</td>
<td>9</td>
<td>11</td>
<td>** Analog In</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Trigger In</td>
<td>–</td>
<td>12</td>
<td>Trigger Out</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Not Used</td>
<td>–</td>
<td>13</td>
<td>Not Used</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>RS232 TX</td>
<td>–</td>
<td>14</td>
<td>RS232 RX</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>User In</td>
<td>–</td>
<td>15</td>
<td>User Out</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Keyed Pin</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes.
* Jog inputs must be short circuit to User 0V (pin 9) in order to function.
** Analog In is 0 to 10V wrt 0V (pin 9).

Fig. A.1 MOTOR I/O connector pin identification
Appendix A Rear Panel Connector Pinout Details

A.1.1 Digital/User Outputs
All digital outputs are of the open-collector type, with a 330 Ohm series resistor. When the output is set to a logic zero (which is also the default state), it behaves as open circuit. When it is a logic one, it behaves as a 330 Ohm resistor connected to ground.

![Fig. A.2 Digital Output Schematic](image)

In some applications, the outputs may be required to control external equipment that has optocoupler type inputs (such as PLCs). The digital outputs used here can be used to directly drive most optocouplers and the +5V supply available on pins 14 and 15 can be used to provide power for the optocouplers.

![Fig. A.3 Application Example: Connection to Optocoupler Inputs](image)

These outputs can also be used to interface to external logic circuitry (a pull-up resistor may be needed if the external logic does not contain it) or control other types of inputs.

Caution. The voltage that external equipment applies to the digital outputs must be within the range 0 V and +5 V DC, or damage to the outputs may occur.

Please see the APTServer helpfile for details on software calls used to control these logic IO.
A.1.2 Digital/User Inputs
The digital inputs used in the controller are of the standard CMOS logic gate type with TTL compatible input levels and a built-in pull-up resistor (10 kOhm to +5V). They can be connected directly to mechanical switches, open-collector type outputs or most type of logic outputs.

When connected to a switch, the inputs will read as logic LOW if the switch is open circuit and HIGH if the switch is closed. When connected to a logic output, or any other voltage source, the input is guaranteed to read LOW if the voltage is above 2.4V and HIGH when the output is below 0.8 V. Please see the APTServer helpfile for details on software calls used to control these logic IO.

Caution. The voltage applied to the digital inputs must be within the range 0 V to +7V DC, or damage to the outputs may occur.

A.1.3 Trigger Output
The trigger output is different from the rest of the digital outputs in that it is a 5V CMOS logic gate with a series 1 kOhm resistor for protection. It behaves as +5V voltage source with 1 kOhm in series when the outputs is a logic HIGH, and 1 kOhm to ground when it is a logic LOW. The 1 kOhm resistor limits the current to 5 mA maximum for any load as long as the output is not connected to voltages outside the 0 V to +5V range.

As this output is actively driven, it can be connected, for example, to an oscilloscope without a need for an external pull-up resistor. It can also be used to drive most optocouplers.
A.1.4 Trigger Input

The Trigger inputs are electrically identical to the digital inputs (i.e. a standard CMOS logic gate type with TTL compatible input levels and a built-in pull-up resistor, 10 kΩ to +5V). They can be connected directly to mechanical switches, open-collector type outputs or most type of logic outputs.

Fig. A.6 Trigger Input Schematic (protection circuitry not shown)

When connected to a switch, the inputs will read as logic LOW if the switch is open circuit and HIGH if the switch is closed. When connected to a logic output, or any other voltage source, the input is guaranteed to read LOW if the voltage is above 2.4V and HIGH when the output is below 0.8 V.

Caution. The voltage applied to the trigger inputs must be within the range 0 V to +7V DC, or damage to the outputs may occur.

A.1.5 +5 Volt Supply

A +5 V, 250 mA supply is provided for interfacing to external circuits that require a power source.

Caution. Do not exceed the 250 mA maximum output current. For applications requiring higher currents an external power supply must be used.
A.2 Rear Panel Drive Channel Connectors

The 'MOTOR DRIVE' connector provides connection to the motors. The pin functions are detailed in Fig. A.7. In each case the signal must be referenced to the indicated return pin in order to be true.

![Drive Channel Connector Diagram]

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Return</th>
<th>Pin</th>
<th>Description</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encoder A +ve</td>
<td>9</td>
<td>2</td>
<td>Encoder A -ve</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Encoder B +ve</td>
<td>11</td>
<td>4</td>
<td>Encoder B -ve</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>5V User</td>
<td>13</td>
<td>6</td>
<td>Not Used</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Phase B -</td>
<td>15</td>
<td>8</td>
<td>Phase A -</td>
<td></td>
</tr>
</tbody>
</table>

Fig. A.7 DRIVE CHANNEL connector pin identification
Appendix B

Preventive Maintenance

Warning. The equipment contains no user servicable parts. There is a risk of severe electrical shock if the equipment is operated with the covers removed. Only personnel authorized by Thorlabs Ltd and trained in the maintenance of this equipment should remove its covers or attempt any repairs or adjustments. Maintenance is limited to safety testing and cleaning as described in the following sections.

B.1 Safety Testing

PAT testing in accordance with local regulations, should be performed on a regular basis, (typically annually for an instrument in daily use).

Caution. The instrument contains a power supply filter. Insulation testing of the power supply connector should be performed using a DC voltage.

B.2 Fuses

Two T 2A/250V a.c. antisurge ceramic fuses are located on the back panel, one for the live feed and one for the neutral as follows:

<table>
<thead>
<tr>
<th>Fuse</th>
<th>Rating</th>
<th>Type</th>
<th>Fused Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>T 2A</td>
<td>ceramic; antisurge; 20mm</td>
<td>Live feed</td>
</tr>
<tr>
<td>F2</td>
<td>T 2A</td>
<td>ceramic; antisurge; 20mm</td>
<td>Neutral feed</td>
</tr>
</tbody>
</table>

When replacing fuses:

1) Switch off the power and disconnect the power cord before removing the fuse cover.
2) Always replace broken fuses with a fuse of the same rating and type.
B.3 Cleaning

Warnings.
- Disconnect the power supply before cleaning the unit.
- Never allow water to get inside the case.
- Do not saturate the unit.
- Do not use any type of abrasive pad, scouring powder or solvent, e.g. alcohol or benzene.

The fascia may be cleaned with a soft cloth, lightly dampened with water or a mild detergent.
Appendix C

Specifications and Associated Products

C.1 Specifications

Input/Output:
- Motor Drive Channel (15-Pin D-type Female)
- 2-Phase Bipolar Motor Drive Output
- Differential Quadrature Encoder Interface
- Forward, Reverse Limit Switch Inputs
- Motor Control (15-Pin D-type Female)
 - Jog Forward
 - Jog Back
 - RS 232 Communications Channels
 - User Outputs/Inputs
- Single-ended analog input (0-10 Volt)
- Trigger In/Out (For Future Use)

Resolution:
- 128 Microsteps per Full Step
- 200 Step Motor - 25,600 Microsteps per Revolution
- 24 Step Motor - 3072 Microsteps per Revolution

Motor Power:
- Up to 48V/50W (peak)

Input Power Requirements
- Voltage: 85-264 VAC
- Power: 100W
- Fuse: 2A
- Motor speeds: Up to 600 RPM (for 200 full step motor)
- Encoder feedback bandwidth: 500,000 counts/sec

General
- Housing Dimensions (W x D x H): 152 x 244 x 104mm (6 x 9.6 x 4.1 in.)
- Instrument Weight: 3.18kg (7 lbs)

Compatible Motors
- Peak Powers: 5 to 50W
- Average Power: 25 W Maximum
- Step Angle Range: 20° to 1.8°
- Coil Resistance (nominal): 4 to 15Ω
- Coil Inductance (nominal): 4 to 15mH
- Rated Phase Currents (nominal): 100mA to 1A
C.2 Associated Products

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepper Motor Actuator, 4mm travel</td>
<td>DRV001</td>
</tr>
<tr>
<td>Stepper Motor Actuator, 25mm (1") travel, trapezoidal leadscrew</td>
<td>DRV013</td>
</tr>
<tr>
<td>Stepper Motor Actuator, 50mm (2") travel, trapezoidal leadscrew</td>
<td>DRV014</td>
</tr>
<tr>
<td>Stepper Motor Actuator, 25mm (1") travel, ball screw drive</td>
<td>DRV113</td>
</tr>
<tr>
<td>Stepper Motor Actuator, 50mm (2") travel, ball screw drive</td>
<td>DRV114</td>
</tr>
<tr>
<td>Stepper Motor Drive Cable (1.25 Metres)</td>
<td>PAA 610</td>
</tr>
<tr>
<td>Stepper Motor Drive Cable (3.0 Metres)</td>
<td>PAA 611</td>
</tr>
</tbody>
</table>
Appendix D

Stepper Motor Operation - Background

D.1 How A Stepper Motor Works

D.1.1 General Principle
Thorlabs’ actuators use a stepper motor to drive a precision lead screw.

Stepper motors operate using the principle of magnetic attraction and repulsion to convert digital pulses into mechanical shaft rotation. The amount of rotation achieved is directly proportional to the number of input pulses generated and the speed is proportional to the frequency of these pulses. A basic stepper motor has a permanent magnet and/or an iron rotor, together with a stator. The torque required to rotate the stepper motor is generated by switching (commutating) the current in the stator coils as illustrated in Fig. D.1.

![Fig. D.1 Simplified concept of stepper motor operation](image)

Although only 4 stator poles are shown above, in reality there are numerous tooth-like poles on both the rotor and stator. The result is that positional increments (steps) of 1.8 degrees can be achieved by switching the coils (i.e. 200 steps per revolution). If the current through one coil is increased as it is decreased in another, the new rotor position is somewhere between the two coils and the step size is a defined fraction of a full step (microstep).

The size of the microstep depends on the resolution of the driver electronics. When used with the Thorlabs BSC103 Stepper Motor Controller, the smallest angular adjustment is 0.014 degrees (i.e. 1.8/0.014 = 128 microsteps per full step), resulting in a resolution of 25,600 microsteps per revolution for a 200 full step motor.

In practise, the mechanical resolution achieved by the system may be coarser than a single microstep, primarily because there may be a small difference between the orientation of the magnetic field generated by the stator and the orientation in which the rotor comes to rest.
D.1.2 Positive and Negative Moves

Positive and negative are used to describe the direction of a move. A positive move means a move from a smaller absolute position to a larger one, a negative move means the opposite.

In the case of a linear actuator, a positive move takes the platform of the stage further away from the motor.

In a rotational stage, a positive move turns the platform clockwise when viewed from above.

D.1.3 Velocity Profiles

To prevent the motor from stalling, it must be ramped up gradually to its maximum velocity. Certain limits to velocity and acceleration result from the torque and speed limits of the motor, and the inertia and friction of the parts it drives.

The motion employed is described by a trapezoidal velocity profile, reflecting the shape of the velocity vs. time graph (see Fig. D.2.), thereby driving the stage to its destination as quickly as possible, without causing it to stall or lose steps.

The stage is ramped at acceleration ‘a’ to a maximum velocity ‘v’. As the destination is approached, the stage is decelerated at ‘a’ so that the final position is approached slowly in a controlled manner.

![Fig. D.2 Graph of a trapezoidal velocity profile](image)

D.2 Positioning a Stage

D.2.1 General

Whenever a command is received to move a stage, the movement is specified in motion units, (e.g. millimetres). This motion unit value is converted to microsteps before it is sent to the stage. If operating the unit by the front panel (local mode) this conversion is performed internally by the controller. If operating via a PC (remote mode) then the conversion is performed by the APT software.

Each motor in the system has an associated electronic counter in the controller, which keeps a record of the net number of microsteps moved. If a request is received to report the position, the value of this counter is converted back into motion units.
D.2.2 Home position

When the system is powered up, the position counters in the controller are all set to zero and consequently, the system has no way of knowing the position of the stage in relation to any physical datum.

A datum can be established by sending all the motors to their ‘Home’ positions. The ‘Home’ position is set during manufacture and is determined by driving the motor until the negative limit switch is reached and then driving positively a fixed distance (zero offset). When at the Home position, the counters are reset to zero thereby establishing a fixed datum that can be found even after the system has been switched off.

See Section 3.4. for details on performing a Home move.

D.2.3 Limit Switches

A linear stage moves between two stops, and movement outside these limits is physically impossible. Linear stages can include stages that control the angle of a platform within a certain range, although the movement of the platform is not really linear but angular. Rotary stages can rotate indefinitely, like a wheel.

Linear and rotary stages both contain microswitches that detect certain positions of the stage, but they differ in the way these switches are used.

All linear stages have a –ve limit switch, to prevent the stage from accidentally being moved too far in the –ve direction. Once this switch is activated, movement stops. The switch also provides a physical datum used to find the Home position. Some linear stages and actuators also have a +ve limit switch, whereas others rely on a physical stop to halt the motion in the positive direction. A rotary stage has only one switch, used to provide a datum so that the Home position can be found. Movement is allowed right through the switch position in either direction.

Fig. D.3 Stage limit switches
D.2.4 Minimum and Maximum Positions
These positions are dependent upon the stage or actuator to which the motors are fitted, and are defined as the minimum and maximum useful positions of the stage relative to the ‘Home’ position - see Fig. D.4.

The distance from the Minimum position to the Maximum position is the ‘useful travel’ of the stage. It is often the case that the Minimum position is zero. The Home and Minimum positions then coincide, with movement always occurring on the positive side of the Home position.

Rotary stages have effectively no limits of travel. The Minimum and Maximum positions are conventionally set to 0 and 360 degrees respectively. When the position of a rotary stage is requested, the answer will be reported as a number between 0 and 360 degrees, measured in the positive direction from the Home position.

![Fig. D.4 Minimum and Maximum Positions](image)

D.2.5 Power Saving
The current needed to hold a motor in a fixed position is much smaller than the current needed to move it, and it is advantageous to reduce the current through a stationary motor in order to reduce heating. Although this heating does not harm the motor or stage, it is often undesirable because it can cause thermal movements through expansion of the metal of the stage.

For this reason, power saving is implemented by default from the software drivers. When a motor is moving, the ‘Move Power’ is applied. When a motor is stationary, the ‘Rest Power’ is applied. See ‘Phase Powers’ in Section 4.3.3. for more details on these power settings.
Appendix D Stepper Motor Operation - Background

D.3 Error Correction

D.3.1 Backlash correction
The term backlash refers to the tendency of the stage to reach a different position depending on the direction of approach.

Backlash can be overcome by always making the last portion of a move in the same direction, conventionally the positive direction. Consider the situation in Fig. 4.5, a positive move, from 10 to 20 mm, is carried out as one simple move, whereas a negative move, from 20 to 10 mm, first causes the stage to overshoot the target position and then move positively through a small amount.

![Fig. 4.5 Backlash correction](image)

The controller has this type of ‘backlash correction’ enabled as its default mode of operation, but it can be overridden if the overshoot part of the move is unacceptable for a particular application.

See Chapter 4 for details on setting the backlash correction.
Products and Customer Support

Optical and Opto-mechanical Components
- Optical mounts and rails
- Lenses, prisms and filters
- Polarization-optics
- Laser diodes
- Standard and specialized optical fibers
- Optics, laser & fiber accessories

Test- and Measurement Systems
- High precision current and TEC controllers for laser diodes
- Highly stable, tunable laser diodes with integrated electronics
- Optical powermeters
- Fabry-Perot interferometer and spectrum analyzers
- Polarization analyzer and controller systems

Optical Tables and Vibration Control
- Optical tables and protection systems
- Vibration damping systems
- Optical breadboards and vibration isolated workstations

Nanopositioning Systems
- Manual, motor- and piezo-driven translators, stages and mounts
- Electronic stepper motor and piezo controllers
- Integrated multi-axis positioning systems at sub-micron to nanometer scale

Laser Systems
- External cavity laser sources
- Ultra broadband laser sources
- Femtosecond laser sources
- Optical amplifiers
- HeNe lasers

Technical Support
Thorlabs provide a comprehensive after sales service. Contact us through your local representative, or at the address below:

Thorlabs Ltd
Saint Thomas Place
Ely
Cambridgeshire CB7 4EX, UK
Tel: +44 (0) 1353 654440
Fax: +44 (0) 1353 654444

Product Warranty
All Thorlabs products are covered by a manufacturers warranty against faulty workmanship and materials, valid for 12 months from the date of original purchase. All products returned under warranty must be returned in their original packaging. Prior to installation, the equipment referred to in this handbook must be stored in a clean, dry environment, in accordance with any instructions given. Periodic checks must be made on the equipment’s condition.

Customer Feedback
It is always helpful to have detailed and accurate information about any problems encountered by customers. We welcome comments or suggestions about any aspect of the equipment and instruction handbooks.