Assignment 1 Solutions

WILLIAM GORDON RITTER*
Jefferson Physical Laboratory, Harvard University
Cambridge, MA 02138, USA

February 17, 2003

Problem 1.

1. Suppose e is a right identity, i.e. $ge = g$ ($\forall g$). So we have, for any $g_1, g_2 \in G$,

 $g_1 g_2 = (g_1 e) g_2 = g_1 (e g_2)$

 Left-multiply by g_1^{-1} to get $g_2 = e g_2$ ($\forall g_2 \in G$).

 Now suppose that some $g \in G$ has a right inverse g_R^{-1} and a left inverse g_L^{-1} that might be different. We have $e = g^{-1} L g$, so

 $g_R^{-1} e g_R^{-1} = (g_L^{-1} g) g_R^{-1} = g_L^{-1} (g g_R^{-1}) = g_L^{-1} e = g_L^{-1}$

2. Suppose there are two elements, e and e' which both satisfy $eg = ge = g$ and $e'h = he' = h$ for all $g, h \in G$. Letting $g = e'$ and $h = e$ yields $ee' = e'$ and $ee' = e$, so $e = e'$. Suppose x, y are both inverses of g. Then $gx = e = gy$, which implies $x = y$ by left cancellation.

Problem 2. Let D_a and D_b be two finite-dimensional irreducible representations of G. Choose a basis $|a, j\rangle$ for the vector space of D_a, where $j = 1, \ldots, n_a$ and similarly choose $|b, \ell\rangle$, a basis for the vector space of D_b. Define

 $A_{ab}^{j\ell} \equiv \int_G dg D_a(g^{-1})|a, j\rangle \langle b, \ell| D_b(g)$

 Then we have

 $D_a(g_1) A_{ab}^{j\ell} = \int_G dg D_a((gg_1^{-1})^{-1})|a, j\rangle \langle b, \ell| D_b(g) = \int_G dg' D_a(g'^{-1})|a, j\rangle \langle b, \ell| D_b(g'g_1) = A_{ab}^{j\ell} D_b(g_1)$

 By Schur’s Lemma, \exists constants $\lambda_{j\ell}^a$ such that $A_{ab}^{j\ell} = \delta^{ab} \lambda_{j\ell}^a I$. It follows that $Tr_{j\ell}^{ab} = \delta^{ab} \lambda_{j\ell}^a Tr I = \delta^{ab} \lambda_{j\ell}^a n_a$. Also, by cyclicity of the trace,

 $Tr_{j\ell}^{ab} = \delta^{ab} \int_G dg \langle a, \ell| D_a(g) D_a(g^{-1})|a, j\rangle = \delta^{ab} \delta_{j\ell} \int_G dg = \delta^{ab} \delta_{j\ell} \text{vol}(G)$
We have assumed \(\text{vol}(G) = 1 \), therefore \(\lambda_{ij}^a = \delta_{ij}/n_a \) and we have

\[
\int_G dg D_a(g^{-1})(a,j)/\ell(b,\ell|D_b(g) = \frac{\delta_{ab}\delta_{ij}}{n_a} I
\]

Expressed in terms of matrix elements, this can be written as

\[
\int_G dg n_a[D_a(g^{-1})_{kj}[D_b(g)]_{\ell m} = \delta_{ab}\delta_{ij}\delta_{km}
\]

Problem 3.

1. For any \(k \in \mathbb{R} \), let \(D_k(x) = e^{ikx} \), interpreted as a \(1 \times 1 \) matrix acting on \(\mathbb{C} \). This is clearly a unitary representation for all \(k \in \mathbb{R} \), and any representation on a 1-dimensional vector space is automatically irreducible.

2. Now let \(D_k(x) = e^{kx} \), again interpreted as a \(1 \times 1 \) matrix acting on \(\mathbb{C} \). A similarity transformation does not change the representation, since all \(1 \times 1 \) matrices commute. Suppose for some \(k \), \(D_k(x) \) is unitary; that means \((e^{kx})^{-1} = \overline{e^{kx}} = e^{-kx} \), which is true for all \(x \) only if \(k = -k \), i.e. \(k = 0 \). We conclude that these \(D_k \)'s, when nontrivial, cannot be equivalent to a unitary representation.

3. It is discussed in Georgi, p. 21 that the characters \(\chi_a(g) \) of the independent irreducible representations of a group form a complete orthonormal basis for the space of class functions.\(^1\) Indeed, if \(F \) is a class function, then Eq. (1.85) in Georgi\(^2\) can be interpreted as saying there are constants \(\gamma^a \) such that

\[F(g) = \sum_a \gamma^a \chi_a(g) \]

The characters of the irreducible unitary reps of the group \(\mathbb{R} \) are \(\chi_a(x) = e^{iax} \), so replacing the sum above by an integral, the analogous statement is that for each \(a \), there is a number \(\gamma(a) \) such that

\[F(x) = \int_{-\infty}^{\infty} \gamma(a)e^{iax} \, da \]

But the existence of \(\gamma(a) \) is guaranteed precisely by the Fourier inversion theorem. (There is some subtlety here because, in general to apply this, the class function \(F \) must be in the space of square-integrable functions \(L^2(G) \). If \(G \) is finite, then any function is in \(L^2(G) \), but otherwise it is an additional assumption that we have to make.)

4. For finite groups we have the orthogonality relation

\[\sum_a \chi_a(g_\alpha)^*\chi_a(g_\beta) = \frac{N}{k_\alpha} \delta_{\alpha\beta} \]

where \(\alpha, \beta \) index the distinct conjugacy classes in \(G \), and \(k_\alpha \) = number of elts in the \(\alpha \)'th conjugacy class. For the group \(G = \mathbb{R} \), every conjugacy class has one element so \(\alpha, \beta \) are just

\(^1\)a class function is a function on the group that is constant on conjugacy classes.

\(^2\)In Georgi’s notation, for a finite group \(\gamma^a = \frac{1}{n_a} \sum_j \gamma_j^a \).
real numbers, and the irreducible characters are of the form $\chi_a(x) = e^{i\alpha x}$. We replace $(1/N) \sum_a$ with $\int_G dg$ where dg is assumed to be an invariant measure, and the orthogonality relation becomes

$$\int da e^{-i\alpha x} e^{iay} = \int da e^{i\alpha(y-x)} = 2\pi \delta(y-x)$$