Lecture 17: Lactation

• Labor Pain
• Morphology of the Breast
• Hormonal Control of Lactation
• Milk Composition
• Benefits of Lactation
• Energetics of Lactation

Why is Labor Long in Humans?

Stage 1
- Dilation and Effacement of cervix
- Mean = 14 hours in first birth

Stage 2
- Expulsion of fetus
- Mean = 50 minutes in first births
- 20 minutes in later births

Why is Labor Painful in Humans?

The size of fetal head going through pelvis?

Why is Labor Painful in Humans?

The need for the cervix to dilate to 10 cm to accommodate the large fetal head?

How is Human Birth Different?

Although rotation through the pelvis contributes to the duration and degree of difficulty during labor ...

Difficult labor in humans is primarily due to the the degree of cervical dilation necessary to accommodate the size of the human fetal head (3x greater than in apes).
Why is Labor Painful in Humans?

• Humans spend significantly more time in the later stages of dilation when pain is greatest.

• Apes probably experience relatively little pain during labor because they have relatively little dilation.

Labor Pain

• Why does relaxation help?
 • Autonomic nervous system
 > Parasympathetic (relaxation)
 > Sympathetic (fight or flight response)

Assisted Birth in Humans

• Birth is routinely performed with assistance in humans.
 • Emotional support to the mother
 • Mechanical assistance

Birth Support (doula effect)

Assisted Birth in Humans

• Birth is routinely performed with assistance in humans.
 • Emotional support to the mother
 • Mechanical assistance
 > May be particularly important for breech births (2 - 4% of births)
Morphology of the Breast
Breast Development

Breast Changes during Pregnancy (mammogenesis)
• Estrogen causes growth of ducts and proliferation of alveoli

Breast Changes during Pregnancy
• Estrogen causes growth of ducts and proliferation of alveoli
• Progesterone causes the alveolar milk glands to mature

Morphology of Alveolus
• Site of milk synthesis
• Prolactin, cortisol and growth hormone turn breast cells into:
 > Secretory cells that make milk
 > Muscle cells that will squeeze milk down through ducts

Morphology of Alveolus
• Site of milk synthesis
• Contained with a capsule of basement membrane which contains contractile myoepithelial cells.
Stages of Breast Milk Production

- Mammogenesis: establishment of glandular morphology capable of producing large quantities of milk

Mammogenesis
(complete at 4 mths)

Stages of Breast Milk Production

- Lactogenesis: establishment of actively secreting mammary gland

Lactogenesis
(Begins at Parturition)

Stages of Breast Milk Production

Hormones of Lactation

- Galactopoiesis: maintenance of milk secretion

Galactopoiesis

Stages of Breast Milk Production

- Conception
- Pregnancy
- Birth
- Lactation
- Weaning

Progestosterone
Oestrogens

Prolactin
hPL

Prolactin & Milk Production

Neuroendocrine Reflex

- Nipple stimulation

Prolactin & Milk Production

- Nipple stimulation
- Hypothalamus stops producing prolactin-inhibiting factor (dopamine)
Prolactin & Milk Production

- Hypothalamus stops producing prolactin-inhibiting factor (dopamine)
- Hypothalamus secretes VIP (vasoactive intestinal polypeptide)

Suckling and Prolactin

- Increased suckling produces increased milk production.
- Prolactin approaches level of non-lactating women in 4-6 hours

Milk Letdown & Oxytocin

- Milk passes from alveoli, via ducts, to the storage sinuses
Milk Letdown & Oxytocin

- Milk passes from alveoli, via ducts, to the storage sinuses
- Suckling stimulates mothers autonomic sensory nerves in the breast

Latching on

- Babies latch on to the areola, NOT the nipple

Milk Letdown & Oxytocin

- Suckling stimulates mothers autonomic sensory nerves in the breast
- Sends message to hypothalamus
- Causes posterior pituitary to produce oxytocin
- Stimulates muscle cells in breast to contract
Milk Composition: Colostrum

- Produced in first few days after birth

- High in protein, low in fat and lactose (milk sugar)

- Rich in immunoglobulins (esp. IgA and IgG)
- Establish normal bacterial flora of infant’s digestive track
- Provides epidermal growth factors for final maturation of infant gut.

Breast Milk Immunity

- Immunoglobulins in breast milk protects newborns against infectious disease
Breast Milk Immunity

- Immunoglobulins in breast milk protects newborns against infectious disease
- Peyer’s patches in maternal gut

Breast Milk Immunity

- Immunoglobulins in breast milk protects newborns against infectious disease
- Peyer’s patches in maternal gut
- Lymphocytes lodge in breast and produce IgA in breast milk which coats baby’s intestines and prohibit foreign objects from getting through

Milk Composition

- Foremilk—milk stored in ducts
 - Low fat, low protein, watered-down
 - 1/3 of total milk volume each nursing

Milk Composition

- Hindmilk—milk stored in alveolar cells and released during let down
 - High fat, high protein

Benefits of Lactation

- Ingestion by Newborn Humans:
 - Lipids in human milk better absorbed than cows milk

Benefits of Lactation

- Ingestion by Newborn Humans:
 - Lipids in human milk better absorbed than cows milk
 - Amino acids in cow’s milk difficult for newborn’s liver to break down into important proteins
Benefits of Lactation

• Ingestion by Newborn Humans:
 • Lipids in human milk better absorbed than cows milk
 • Amino acids in cow’s milk difficult for newborn’s liver to break down into important proteins
 • Form of iron not well absorbed

Benefits of Lactation

• Composition
 • Cow’s milk low in nucleotides: 25% human, 6% cow

Benefits of Lactation

• Composition
 • Nucleotides -- 25% human, 6% cow
 • Processing of cow’s milk destroys lactoferrin and transferrin and other immunological cells

Benefits of Lactation

• Infant Health:
 • Bottle fed babies have 2x the illness rate and
 • 3x hospital admission rate as breast fed babies

Benefits of Lactation

• Breast fed babies have lower rates of:
 • Ear infection
 • Pneumonia
 • Bronchitis
 • Vomiting
 • Diarrhea
Benefits of Lactation

- Effects in adults
 - Lower rates of diabetes
 - Lower rates of asthma
 - Lower cholesterol levels
 - Lower heart disease
 - Lower risk of breast cancer

Lactation and Public Policy

How do we create a more ‘breastfeeding’ friendly society?

Field Studies of Breastfeeding

Percentage of Breastfeeding in the US

- 1946: 65%
- 1956: 37%
- 1966: 27%
- 1972: 28%
Lactation in the !Kung

- Long interbirth intervals - 44.1 mths
- Patterning of lactation
 - 4.06 bouts/hour
 - 7.83min/hour
 - 1.92 min/bout
- As child gets older — increase in length between bouts

Lactation in the !Kung

- Lower estradiol and progesterone in nursing mothers
- Correlated with age of infant and mean time between nursing bouts
- Suggested inter-bout interval key variable in lactation subfecundity

(Lactation in the !Kung)

(Lactation in the !Kung)
Prolactin & Nursing Bout Length

Prolactin, # Nursing Bouts, & Time

Edinburgh Study of Breastfeeding

Edinburgh Study

• Studied 27 breastfeeding and 10 bottle feeding mothers
• Lactation/supplementation diaries
• Measured urinary hormones
• Measure prolactin in blood

Resumption of Ovarian Function

Howie and McNeilly
Supplementation & Ovarian Function

Resumption of Ovarian Function

Edinburgh Study
- Lactating women resumed ovarian function later postpartum than did bottle feeding women

Edinburgh Study
- Lactating women resumed ovarian function later postpartum than did bottle feeding women
- Frequency of ovulation increased with time as lactation was phased out

Edinburgh Study
- Lactating women resumed ovarian function later postpartum than did bottle feeding women
- Frequency of ovulation increased with time as lactation was phased out
- Rapid resumption of ovarian function in bottle feeders; gradual resumption in breast feeders
- Importance of introduction of supplementary foods
Edinburgh Study

- Lactating women resumed ovarian function later postpartum than did bottle feeding women
- Frequency of ovulation increased with time as lactation was phased out
- Rapid resumption of ovarian function in bottle feeders; gradual resumption in breast feeders
- Importance of introduction of supplementary foods
- Women who conceived while nursing decreased the frequency to 3 or fewer times/day.

Lactation & Supplementation: The Gambia

Supplementation and Breast Milk

- Gave 130 women supplement increased calories from 1568 to 2291 + vitamins
- No effect on breast milk volume
- Protein content slightly increased (6.6%)
- Milk fat increase (7.9%)
- Lactose decrease (-7.6%)
- No change in calories
- Vitamin increase from supplement

Supplementation and Breast Milk

- Gave 130 women supplement increased calories from 1568 to 2291 + vitamins
- No effect on breast milk volume
- Protein content slightly increased (6.6%)
- Milk fat increase (7.9%)
- Lactose decrease (-7.6%)
- No change in calories
- Vitamin increase from supplement

Prolactin & Supplementation

- Gave 130 women supplement increased calories from 1568 to 2291 + vitamins
- No effect on breast milk volume
- Protein content slightly increased (6.6%)
- Milk fat increase (7.9%)
- Lactose decrease (-7.6%)
- No change in calories
- Vitamin increase from supplement
Gambian Study

- Supplementation had only a small effect on quantity and quality of breast milk
- Supplementation had a dramatic effect on prolactin levels

Prolactin & Lactational Amenorrhea

- High levels of prolactin associated with reduced ability for egg to produce estradiol (in culture)
- Evidence now is role may be more indirect.

The Toba: Positive Energy Balance and High Nursing Frequency

Breast Feeding Hypotheses

- How to explain variation in duration of postpartum period of infecundity
 - Nursing Intensity Hypothesis
 - Metabolic Load Hypothesis

Nursing Intensity Hypothesis
Nursing intensity hypothesis:
The more intensive the nursing, the longer the period of lactational amenorrhea

Relative metabolic load hypothesis:
The higher the relative cost of nursing, the longer the period of lactational amenorrhea
Physical activity postpartum

n = 70 women

Focal sampling

Toba women remain well-nourished during the entire postpartum period

WHO’s “normal” range

Changes in energy balance in relation to time to first postpartum menses

Positive energy balance

Negative energy balance

Average n = 45

Months to 1st menses
Lactational Amenorrhea in Toba

- Mean = 10.3 months
- High nutritional status and high nursing intensity — leads to short periods of lactational amenorrhea
 - Thus, nursing intensity alone is insufficient explanation

Interaction between nursing intensity and nutritional status

Next time ...

- Mother-Infant Bonding
- Fatherhood and changes in paternal hormones
- Co-sleeping and SIDS
- Parenting styles cross-culturally
Field Studies of Breastfeeding

Proximate determinants of lactational amenorrhea

Toba women nurse their infants very frequently

Nursing events duration

Maternal diet

- One main meal + snacks
- Monotonous, calorie-dense diet
- Rich in complex carbohydrates and fats (e.g., fried dough, white bread, noodles, rice, polenta)

Determinants of duration of lactational amenorrhea

- No association with nursing behavior (frequency, duration of individual bouts, total duration of nursing, all regression p > 0.11)

- No association with static measures of maternal energetics (e.g., pre-pregnancy BMI, average postpartum BMI, BMI at time of 1st menses, % fat; all p's > 0.09)
<table>
<thead>
<tr>
<th>Significant correlation with dynamic, time-dependent measures of maternal energetics (e.g., postpartum energy balance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion</td>
</tr>
<tr>
<td>The pattern of resumption of postpartum fertility could be explained by differences in individual metabolic budgets.</td>
</tr>
</tbody>
</table>