Problem 5 is worth 40% of this problem set, and problems 1-4 constitute the remaining 60%.

1 Problem 1

Indicate for each pair of expressions \((A, B)\) in the table below the relationship between \(A\) and \(B\). Your answer should be in the form of a table with a “yes” or “no” written in each box. For example, if \(A\) is \(O(B)\), then you should put a “yes” in the first box. If the base of a logarithm is not specified, you should assume it is base-2.

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(O)</th>
<th>o</th>
<th>(\Omega)</th>
<th>(\omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2 n)</td>
<td>(\log_3 n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log \log n)</td>
<td>(\sqrt{\log n})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{(\log n)^7})</td>
<td>(n^7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>(n^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log(n!))</td>
<td>(\log(n^n))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Problem 2

For all of the problems below, when asked to give an example, you should give a function mapping positive integers to positive integers. (No cheating with 0’s!)

- Show that if \(f\) is \(o(g)\), then \(f \cdot h\) is \(o(g \cdot h)\) for any positive function \(h\).
- Give a proof or a counterexample: if \(f\) is not \(O(g)\), then \(f\) is \(\Omega(g)\).
- Find (with proof) a function \(f\) such that \(f(2n)\) is \(O(f(n))\).
- Find (with proof) a function \(f\) such that \(f(n)\) is \(o(f(2n))\).
- Show that for all \(\epsilon > 0\), \(\log n\) is \(o(n^\epsilon)\).
3 Problem 3

QuickSort is a simple sorting algorithm that works as follows on input $A[0], \ldots, A[n-1]$:

\begin{verbatim}
QuickSort(A):
 n = length(A)
 if n <= 1:
 return A
 else:
 mid = floor(n/2)
 smaller <-- number of elements of A less than A[mid]
 larger <-- number of elements of A larger than A[mid]
 // put all elements of A into either B or C, based on whether they're
 // smaller or bigger than A[mid], respectively
 B <-- empty array of length smaller
 C <-- empty array of length larger
 writtenB <-- 0
 writtenC <-- 0
 for i = 1 to n:
 if A[i] < A[mid]:
 B[writtenB] <-- A[i]
 writtenB <-- writtenB + 1
 else if A[i] > A[mid]:
 C[writtenC] <-- A[i]
 writtenC <-- writtenC + 1
 B <-- QuickSort(B)
 C <-- QuickSort(C)
 // "+" denotes array concatenation
 return the array B + [A[mid]] + C
\end{verbatim}

Assume the elements of A are distinct, and that the values smaller and larger are each calculated in time $\Theta(n)$.

(a) (5 points) Construct an infinite sequence of inputs $\{A_k\}_{k=1}^\infty$ such that (1) A_k is an array of length n_k with $\lim_{k \to \infty} n_k = \infty$, and (2) if $f(k)$ denotes the running time of QuickSort on A_k, then $f(k) = \Theta(n_k \log n_k)$.

(b) (5 points) Do exactly the same as part (a), except this time construct a sequence yielding $f(k) = \Theta(n_k^2)$.

(c) (2 points, bonus) Suppose a function $T = T(n)$ is given satisfying $T(n) = \Omega(n \log n)$ and $T(n) = O(n^2)$. Then do the same as in parts (a) and (b), except this time construct a sequence yielding $f(k) = \Theta(T(n_k))$.

4 Problem 4

Give asymptotic bounds for $T(n)$ in each of the following recurrences. Hint: You may have to change variables somehow in the last one.

- $T(n) = 2T(n/2) + n^2$.
- $T(n) = 7T(n/3) + n$.
- $T(n) = 16T(n/4) + n^2$.
- $T(n) = T(\sqrt[3]{n}) + 1$.

5 Programming Problem

Solve GOBOSORT on the programming server (https://cs124.seas.harvard.edu).

Hint: Try to first solve the case $m = 1$ (it is helpful to model your solution after MergeSort), then build from that solution for larger m.