track and arc Balls

- how should we link mouse motion to object rotation.
- can do better than our current setup.
- want the feeling of pushing a sphere around
- want path invariance

setup

- we are moving an object with respect to cube-eye \(\vec{a}' = \vec{w}'(O_T(E)) \)
- The user clicks on the screen and drags the mouse. We wish to interpret this user motion as some rotation \(M \) that is applied to \(\vec{o}' \) with respect to \(\vec{a}' \).

mental model

- imagine a sphere of some chosen radius that is centered at \(\odot \), the origin of \(\vec{o}' \).
- user clicks on the screen at some pixel \(s_1 \) over the sphere in the image
 - we interpret this as the user selecting some 3D point \(\tilde{p}_1 \) on the sphere.
- the user then moves the mouse to some other pixel \(s_2 \) over the sphere,
 - we interpret as a second point \(\tilde{p}_2 \) on the sphere.
- define the unit direction vectors \(\vec{v}_1, \vec{v}_2 : \text{normalize}(\tilde{p}_1 - \odot) \) and \(\text{normalize}(\tilde{p}_2 - \odot) \) respectively.
- Define the angle \(\phi = \arccos(\vec{v}_1 \cdot \vec{v}_2) \)
- define the axis \(\vec{k} = \text{normalize}(\vec{v}_1 \times \vec{v}_2) \).

the balls

- trackball: \(M \) is the rotation of \(\phi \) degrees about the axis \(\vec{k} \).
- arcball: \(M \) is the rotation of \(2\phi \) degrees about the axis \(\vec{k} \).
- could be implemented with matrices or quaternions.
- arcball is very easy with quaternions
- rotation of \(2\phi \) degrees about the axis \(\vec{k} \) can be represented by the quaternion
 \[
 \begin{bmatrix}
 \cos(\phi) \\
 \sin(\phi)\vec{k}
 \end{bmatrix} = \begin{bmatrix}
 \vec{v}_1 \cdot \vec{v}_2 \\
 \vec{v}_1 \times \vec{v}_2
 \end{bmatrix} = \begin{bmatrix}
 0 \\
 \vec{v}_2
 \end{bmatrix} \begin{bmatrix}
 0 \\
 -\vec{v}_1
 \end{bmatrix}
 \]
 - where \(\vec{k}, \vec{v}_1 \) and \(\vec{v}_2 \) are the coordinate 3-vectors representing the vectors \(\vec{k}, \vec{v}_1 \) and \(\vec{v}_2 \) with respect to the frame \(\vec{a}' \).
- start demo

Properties

- trackball feels like the user is simply grabbing a physical point on a sphere and dragging it around.
- but \(s_1 \) to \(s_2 \), followed by \(s_2 \) to \(s_3 \) is different from moving directly from \(s_1 \) to \(s_3 \)
 - \(\tilde{p}_1 \) will be rotated to \(\tilde{p}_3 \), but the two results can differ by some “twist” about the axis \(\odot - \tilde{p}_3 \).
 - This path dependence also exists in our simple rotation interface
- arcball: the object appears to spin twice as fast as expected.
- but is path independent
path ind proof

- If we compose two arcball rotations, corresponding to motion from \(\tilde{p}_1 \) to \(\tilde{p}_2 \) followed by motion from \(\tilde{p}_2 \) to \(\tilde{p}_3 \)
- we have \(\vec{o}^t = \tilde{a}^t A \) (for some \(A \)).
- reading from right to left, we see that our transformations are \(\tilde{a}^t M_2 M_1 A \)
 - \(\tilde{a}^t \) doesn’t change since we are not changing the eye frame or the origin of the object frame.
- we get for \(M_2 M_1 \):
 \[
 \begin{bmatrix}
 \hat{v}_2 \cdot \hat{v}_3 \\
 \hat{v}_2 \times \hat{v}_3
 \end{bmatrix}
 \begin{bmatrix}
 \hat{v}_1 \cdot \hat{v}_2 \\
 \hat{v}_1 \times \hat{v}_2
 \end{bmatrix}
 \]
- which gives us
 \[
 \begin{bmatrix}
 0 \\
 \hat{v}_3
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 -\hat{v}_2
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 \hat{v}_2
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 -\hat{v}_1
 \end{bmatrix}
 =
 \begin{bmatrix}
 \hat{v}_1 \cdot \hat{v}_3 \\
 \hat{v}_1 \times \hat{v}_3
 \end{bmatrix}
 \]
- which is exactly what we would have gotten had we moved directly from \(\tilde{p}_1 \) to \(\tilde{p}_3 \).

Implementation

- Trackball and Arcball can be directly implemented using either 4 by 4 matrices or quaternions to represent the transformation \(M \).
 - we will use quaternions, since we already have them
- the resulting quaternion depends only on vectors \(\hat{v} \)
 - so origin of frame is irrelevant
- we can work in eye coordinates instead of cube-eye

getting eye coordinates

- One slightly tricky part is computing the coordinates of the point on the sphere corresponding to a selected pixel
 - this is geometric ray tracing (this is essentially ray-tracing, which we will covered later)
- hack: work in “window coordinates”.
 - x-axis is the horizontal axis of the screen, the y-axis is the vertical axis of the screen, and the z-axis is coming out of the screen.
 - think of the sphere’s center as simply sitting on the screen.
- Given the \((x, y)\) window coordinates of click the z coordinate on the sphere can be solved using \((x - c_x)^2 + (y - c_y)^2 + (z - 0)^2 - r^2 = 0\),
 - \([c_x, c_y, 0]^t\) are the window coordinates of the center of the sphere.
 - \(r \) is the radius of the sphere measured in pixels.
 - and then normalize to get \(\hat{v} \).
- if outside of the sphere, then clamp to its silhouette. and then normalize.
 - this can be done by just normalizing \([x - c_x, y - c_y, 0]^t\).

calculation

- need the center of the sphere
- so we give you code that transforms eye coords to screen coords.
Cvec2 getScreenSpaceCoord(const Cvec3& p,
const Matrix4& projection,
double frustNear, double frustFovY,
int screenWidth, int screenHeight)

- we draw the ball using object coordinates, so we need to calculate its size in eye/object coordinates
- so we provide you with

double getScreenToEyeScale(double z, double frustFovY, int screenHeight)

- in the ball drawer, you right multiply a scale matrix to the MVM.

translation

- in translation, we interpret mouse displacement (measured in pixels) to object displacement.
- may as well use the same screenToEyeScale factor so the object moves with the mouse.
- once the object is moved, or we change the eye we need to recalculate the scale
 - wait for click up.

moving skycam

- we will do the same thing when moving the sky-cam with respect to world-eye \(\vec{a}' = \hat{w}'(E)R \)
- The user clicks on the screen and drags the mouse. We wish to interpret this user motion as some rotation \(M \) that is applied to \(\vec{e}' \) with respect to \(\vec{a}' \).
- same basic calculation will give us our action RBT.
- invert it to get \(M \)