linear

• we will want to represent the geometry of points in space
• we will often want to perform (rigid) transformations to these objects to position them
 – translate
 – rotate
• or move them in an animation
 – time varying tform
• position or move virtual camera
• we also may use non-rigid tforms to specify shape
 – scale an object
 – squash a sphere into an ellipsoid.

SO....

• so we must understand how to manipulate 3d coordinates and transforms
• we must pay attention to order of tforms
• we must pay attention to the role of the coordinate system w.r.t. which we perform a tform
• we will look at linear and affine transformations
• at end of the day, our code will have vertices with 3d coords and we will use 4 by 4 matrices to describe properly manipulate them
• but to figure out what to code, we need to first do some thinking/paper-pencil work.

Geometric data types

• we describe a point using a coordinate vector

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

• specifies position wrt an agreed upon coordinate system
 – three agreed directions
 – agreed origin
 – if we change agreed upon c.s., we must change the coordinate vector
• so a point is specified with a coordinate system and a coordinate vector

4 geometric data types

• point: \(\vec{p} \)
 – represents place
• vector: \(\vec{v} \)
 – represents motion/offset between points
• coordinate vector: \(\vec{c} \)
• coordinate system \(\vec{s} \)
 – “basis” for vectors
 – “frame” is for points
vectors vs coordinate vectors

- a vector is a geometric entity (motion/offset between points) in a real or virtual 3D world
- a coordinate vector is a set of numbers used to specify a vector given an agreed coordinate system

vector space

- a vector space \(V \): some set of elements \(\vec{v} \)
- needs an addition operation
- needs scalar multiplication
- some other rules
 - addition is associative and commutative
 - scalar mul must distribute across vector add

\[
\alpha(\vec{v} + \vec{w}) = \alpha\vec{v} + \alpha\vec{w}
\]

examples of vector spaces

- the set \(V \) may be lots of different things
 - motion between points !!!!
 - polynomial expressions
 - farm animals
 - triplets of numbers

coordinate system: basis

- a basis is a minimal set of vectors that we can use to get to all of the vectors using our ops.
 - minimal == linearly independent
- dimension is number of basis elements needed
- for us it will be 3
- so basis can be used to address all of the vectors uniquely using coordinates

\[
\vec{v} = \sum_i c_i \vec{b}_i
\]

shorthand

- write this as

\[
\vec{v} = \sum_i c_i \vec{b}_i = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}
\]

- even shorter

\[
\vec{v} = \vec{B}^t \vec{c}
\]

linear transformation

- a linear tform \(\mathcal{L} \) maps from \(V \) to \(V \)
- satisfies 2 rules

\[
\mathcal{L}(\vec{v} + \vec{w}) = \mathcal{L}(\vec{v}) + \mathcal{L}(\vec{w})
\]

\[
\mathcal{L}(\alpha \vec{v}) = \alpha \mathcal{L}(\vec{v})
\]
linear tforms and matrices

- linear transformation can be exactly specified by telling us its effect on the basis vectors.
- linear transforms can be expressed with matrix multiplication
- Linearity implies
 \[\mathbf{v} \Rightarrow L(\mathbf{v}) = \mathbf{v} \Rightarrow \sum_i c_i L(\mathbf{b}_i) \]
- in our shorthand this is
 \[
 \begin{bmatrix}
 \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\
 \end{bmatrix}
 \begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 L(\mathbf{b}_1) & L(\mathbf{b}_2) & L(\mathbf{b}_3) \\
 \end{bmatrix}
 \begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 \end{bmatrix}
 \]
- each \(L(\mathbf{b}_i) \) can ultimately be written as some linear combination of the original basis vectors using numbers \(M_{i,j} \)
 \[
 \begin{bmatrix}
 L(\mathbf{b}_1) & L(\mathbf{b}_2) & L(\mathbf{b}_3) \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\
 \end{bmatrix}
 \begin{bmatrix}
 M_{1,1} & M_{1,2} & M_{1,3} \\
 M_{2,1} & M_{2,2} & M_{2,3} \\
 M_{3,1} & M_{3,2} & M_{3,3} \\
 \end{bmatrix}
 \]

well defined ops

- vector to vector
 \(\mathbf{b}'c \Rightarrow \mathbf{b}'Mc \)
 - see fig
- basis to basis,
 \[
 \begin{bmatrix}
 \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\
 \end{bmatrix}
 \Rightarrow
 \begin{bmatrix}
 L(\mathbf{b}_1) & L(\mathbf{b}_2) & L(\mathbf{b}_3) \\
 \end{bmatrix}
 \]
 - see fig
- coordinate vector to coordinate vector (this is the one we will see in code, but not until then).
 \(c \Rightarrow Mc \)
• the identity matrix I implements to “do nothing” transform
• an inverse matrix has the property $MM^{-1} = M^{-1}M = I$
• not every matrix has an inverse, but nice ones do, and all of our matrices are nice.

matrices for change of basis
• we just saw as an intermediate result an expression of the form
 \[
 \begin{bmatrix}
 \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\
 \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \\
 \end{bmatrix}
 \begin{bmatrix}
 M_{1,1} & M_{1,2} & M_{1,3} \\
 M_{2,1} & M_{2,2} & M_{2,3} \\
 M_{3,1} & M_{3,2} & M_{3,3} \\
 \end{bmatrix}
 \]
• or in shorthand
 \[
 \vec{a}' = \vec{b}'M \\
 \vec{a}'M^{-1} = \vec{b}'
 \]
• this is not a transformation.
• we have used a matrix to express one named basis with respect to another.
• this will be useful too.
• we can also use this to have different expressions for the same vector
 \[
 \vec{v} = \vec{b}'c = \vec{a}'M^{-1}c
 \]
• ex 2.1 and 2.2

dot
• our vectors come equipped with a (bilinear) dot product operation
 \[
 \vec{v} \cdot \vec{w}
 \]
• allows us to define the squared length (also called squared norm)
 \[
 \| \vec{v} \|^2 := \vec{v} \cdot \vec{v}
 \]
• The dot product is related to the angle $\theta \in [0..\pi]$ between two vectors
 \[
 \cos(\theta) = \frac{\vec{v} \cdot \vec{w}}{\| \vec{v} \| \| \vec{w} \|}
 \]

ortho
• 2 vectors are orthogonal if $\vec{v} \cdot \vec{w} = 0$.
• orthonormal basis
• right handed (cyclically-ordered) basis
• dot product in orthonormal basis
 \[
 \vec{b}'c \cdot \vec{b}'d = \left(\sum_i c_i \vec{b}_i \right) \cdot \left(\sum_j d_j \vec{b}_j \right) \\
 = \sum_{i,j} c_i d_j (\vec{b}_i \cdot \vec{b}_j) \\
 = \sum_i c_i d_i
 \]
cross
- the output is the vector
\[\vec{v} \times \vec{w} := \|v\| \|w\| \sin(\theta) \hat{n} \]
- in a r.h. o.n. basis, the coordinates of \((\vec{b}' \vec{c}) \times (\vec{b}' \vec{d})\) are
\[
\begin{bmatrix}
c_2 d_3 - c_3 d_2 \\
c_3 d_1 - c_1 d_3 \\
c_1 d_2 - c_2 d_1
\end{bmatrix}
\]

rotations
- preserves dot product between vector pairs
- preserves right handedness between ordered vector triples
- so maps r.h.o.n. basis to another
- in 3d, every rotation fixes an axis, and rotates some angles r.h. about that axis.

comments
- rotations about different axes do not commute
- composition of two rots about two axes is a rotation about some third axis.

2D rotations
- rotate by \(\theta\) degrees counter clockwise about the origin
\[
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]
- and we can rotate the basis as
\[
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

3d rotations
- rotate a point by \(\theta\) degrees around the \(z\) axis of the basis
\[
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2 & \vec{b}_3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2 & \vec{b}_3
\end{bmatrix}
\begin{bmatrix}
c & -s & 0 \\
s & c & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]
- where \(c \equiv \cos \theta\), and \(s \equiv \sin \theta\).
- fixes points on \(z\) axis
- for points in \(z = k\) plane, it is like a 2D rotation
- basis is important (\(z\) direction)

more 3d rotations
around x axis

\[
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2 & \vec{b}_3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\vec{b}_1 & \vec{b}_2 & \vec{b}_3
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

forward rotation around the y axis

\[
\begin{bmatrix}
c & 0 & s \\
0 & 1 & 0 \\
-s & 0 & c
\end{bmatrix}
\]

arbitrary rotation

- can get any rotation by applying one x,y,z
- can get any rotation by applying one x,y,x
 - called Euler angles
 - visualize with set of gimbals
- one can specify rotation with unit vector axis $[k_x, k_y, k_z]^t$ and θ using matrix

\[
\begin{bmatrix}
k_x^2v + c & k_xk_yv - k_zs & k_xk_zv + k_y\sin\theta \\
k_yk_xv + k_zs & k_y^2v + c & k_yk_zv - k_xs \\
k_zk_xv - k_y\sin\theta & k_zk_yv + k_xs & k_z^2v + c
\end{bmatrix}
\]

where $v \equiv 1 - c$

other linear transforms

- uniform scales (common)

\[
\begin{bmatrix}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{bmatrix}
\]

- non-uniform scales (used for modeling)

\[
\begin{bmatrix}
a_x & 0 & 0 \\
0 & a_y & 0 \\
0 & 0 & a_z
\end{bmatrix}
\]

- shears (rare)

\[
\begin{bmatrix}
1 & b & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

ex 2.3, 2.4