motivation

- for animation, we will want to interpolate between frames in a natural way.
- for now, we want to also improve our rotation interface
- we will study quaternions as alternative to rot mats

\[
R = \begin{bmatrix}
 r & 0 \\
 0 & 1
\end{bmatrix}
\]

- later we will add back in the translations.

recall this beast

- one can specify rotation about an axis represented by a unit norm 3-coordinate vector \(\hat{k} := [k_x, k_y, k_z]^T \) and a rotation angle \(\theta \) using the matrix

\[
\begin{bmatrix}
 k_x^2 v + c & k_x k_y v - k_z s & k_x k_z v + k_y s & 0 \\
 k_y k_x v + k_z s & k_y^2 v + c & k_y k_z v - k_x s & 0 \\
 k_z k_x v - k_y s & k_z k_y v + k_x s & k_z^2 v + c & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

- where \(v \equiv 1 - c \)
- the (geometric) axis of rotation \(\hat{k} \) is determined by how the matrix is placed into an expression, using the “left of” rule

interpolation setup

- desired object frame for “time=0”: \(\vec{o}_0 = \vec{w}^T R_0 \)
- desired object frame for “time=1”: \(\vec{o}_1 = \vec{w}^T R_1 \)
- we wish to find a sequence of rhon frames \(\vec{o}_\alpha \), for \(\alpha \in [0..1] \), that naturally goes from \(\vec{o}_0 \) to \(\vec{o}_1 \).

bad ideas 1

- lin interp of matrices \(R_\alpha := (1 - \alpha)R_0 + (\alpha)R_1 \) and then set \(\vec{o}_\alpha = \vec{w}^T R_\alpha \).

- in the result, each basis vector simply moves along a straight line.
 - since \(R_\alpha \vec{c} = (1 - \alpha)R_0 \vec{c} + (\alpha)R_1 \vec{c} =: (1 - \alpha)\vec{c}_0 + (\alpha)\vec{c}_1 \)

- In this case, the intermediate \(R_\alpha \) are not rotation matrices
- see fig

bad idea 2

- factor both \(R_0 \) and \(R_1 \) into 3, so-called, Euler angles
- These three scalar values could each be linearly interpolated using \(\alpha \). and used to generate intermediate rotations
- not natural,
- not invariant to choice of world frame
- this property is called left invariance
- see figure
- we need an intrinsic geometric operation (describable independent of coordinates or world frame)

lets back up
given two frames, there must be a unique affine transformation Z that maps \vec{o}_0 to \vec{o}_1.

- since \vec{o}_0 and \vec{o}_1 are both rhon frames with the same origin, Z must be a rotation.

- a rotation can always be described using a fixed axis \vec{k} and a rotation amount θ.
 - this is essentially unique

- let us define Z^α to be a rotation about the same \vec{k}, but by $\alpha\theta$ degrees instead.

- applying Z^α to \vec{o}_0, with $\alpha \in [0..1]$. this gives us a natural interpolating sequence \vec{o}_α.
 - this construction is left invariant, and essentially unique.

Uniqueness and Cycles

- actually, Z can be thought of as a rotation of some $\theta + n2\pi$ degrees for any positive or negative integer n, around a fixed axis \vec{k}

- not relevant for linear tform on vectors, but is relevant for interpolation

- the natural choice is to choose n such that $|\theta + n2\pi|$ is minimal.
 - this might be a negative amount.

- actually, Z can also be thought of as a rotation of $-\theta - n2\pi$ degrees around $-\vec{k}$
 - but choosing the minimal rotation will get the same sequence of frames

Using World Frame

- lets work this out with our world frame + matrix representation

- the mapping $\vec{o}_0 \Rightarrow \vec{o}_1$ can be written as $\vec{w}^T R_0 \Rightarrow \vec{w}^T (R_1 R_0^{-1}) R_0$

- let us define $Z := (R_1 R_0^{-1})$

- so Z must be the unique rotation matrix, such that “doing Z wrt \vec{w}” exactly expresses Z.

- the Z matrix is based on a coordinate axis \vec{k}.

- suppose we could compute a “power” operator Z^α that represents a scaled rotation about \vec{k}.

- then as α goes from $0..1$, the sequence $\vec{w}^T Z^\alpha R_0$, goes from \vec{o}_0 to \vec{o}_1 by rotating \vec{o}_0 more and more about a single axis

- this exactly implements what we were looking for

Hard Part

- hard part: factor $R_1 R_0^{-1}$, into its axis/angle form.

- main quat idea: is to keep track of the axis and angle at all times but in a way that allows our manipulations

- this will allow us to do this interpolation

- it also could help in general with avoiding numerical drift away from RBTs.

- it will also make an arcball interface very easy.

The Representation

- a quaternion is 4 tuple with operations

- written

$$\begin{bmatrix} w \\ \hat{c} \end{bmatrix}$$

where w is a scalar and \hat{c} is a coordinate 3-vector.
• suppose an axis \(\vec{k} \) is represented by a unit length coordinate 3-vector \(\hat{k} \)

• a rotation of \(\theta \) degrees about \(\hat{k} \), is represented as

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2})\hat{k}
\end{bmatrix}
\]

• oddity: the division by 2 will be needed to make the operations work out as needed.

antipodes

• Note that a rotation of \(-\theta\) degrees about the axis \(-\hat{k}\) gives us the same quaternion.

• A rotation of \(\theta + 4\pi\) degrees about an axis \(\hat{k}\) also gives us the same quaternion.

• a rotation of \(\theta + 2\pi\) degrees about an axis \(\hat{k}\), which in fact is the same linear transformation, gives us the negated quaternion

• so antipodal quaternions the same rotation transformation

 – but heads up regarding cycles and power

examples

• \(\theta = 0 \):

\[
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

• \(\theta = 2\pi \):

\[
\begin{bmatrix}
-1 \\
0
\end{bmatrix}
\]

• both represent the identity rotation

• \(\theta = \pi \)

\[
\begin{bmatrix}
0 \\
\hat{k}
\end{bmatrix}
\]

• \(\theta = -\pi \)

\[
\begin{bmatrix}
0 \\
-\hat{k}
\end{bmatrix}
\]

• both represent the same flip rotation.

unit norm quats == rotations

• squared norm is sum of 4 squares.

• Any quaternion of the form

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2})\hat{k}
\end{bmatrix}
\]

has a unit norm

• Conversely, as we will see next any unit norm quaternion can be interpreted as above with a \(\hat{k} \) and \(\theta \)

 – this construction also implicitly shows that the interpretation is unique up to additions of \(4\pi \), as well as negation of \(\hat{k} \) and \(\theta \).
• Let's see how to do this factoring on a unit quaternion

\[
\begin{bmatrix}
 w \\
x \\
y \\
z \\
\end{bmatrix}
\]

• Recall that \(||\hat{n}\hat{k}|| = n||\hat{k}|| \).

• First extract the unit axis \(\hat{k} \) by normalizing the three last entries of the quaternion.

• This gives us a positive \(\beta \) and a \(\hat{k} \) so that

\[
\begin{bmatrix}
 w \\
\beta \hat{k} \\
\end{bmatrix} =
\begin{bmatrix}
w \\
x \\
y \\
z \\
\end{bmatrix}
\]

– With \(w^2 + \beta^2 = 1 \) (on unit circle).

• Next, extract \(\theta \) using the \(\text{atan2} \) function in C++.

• \(\text{atan}(\beta, w) \) returns a unique \(\phi \in [-\pi..\pi] \) such that \(\sin(\phi) = \beta \) and \(\cos(\phi) = w \).

• This gives us \(\phi \) and \(\hat{k} \) so that

\[
\begin{bmatrix}
 \cos(\phi) \\
\sin(\phi) \hat{k} \\
\end{bmatrix} =
\begin{bmatrix}
w \\
x \\
y \\
z \\
\end{bmatrix}
\]

Extract II

• So we get a unique value \(\theta/2 \in [-\pi..\pi] \), and thus a unique \(\theta \in [-2\pi..2\pi] \).

• This gives us \(\theta \) and \(\hat{k} \) such that

\[
\begin{bmatrix}
 \cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k} \\
\end{bmatrix} =
\begin{bmatrix}
w \\
x \\
y \\
z \\
\end{bmatrix}
\]

• So we are done.

Power

• Define

\[
\begin{bmatrix}
 \cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k} \\
\end{bmatrix}^\alpha =
\begin{bmatrix}
 \cos(\frac{\alpha \theta}{2}) \\
\sin(\frac{\alpha \theta}{2}) \hat{k} \\
\end{bmatrix}
\]

• Where \(\theta \) and \(\hat{k} \) were extracted uniquely, as above.

– Where \(\theta \in [-2\pi..2\pi] \)

• As \(\alpha \) goes from 0 to 1, we get a series of rotations with angles going between 0 and \(\theta \).

Short Quaternion

• Given a quaternion on which we want to power: \(\begin{bmatrix}
 \cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k} \\
\end{bmatrix} \)

• Suppose \(\cos(\frac{\theta}{2}) > 0 \)

• This means \(\theta/2 \in [-\pi/2..\pi/2] \)
and thus \(\theta \in [-\pi..\pi] \).

- so when we interpolate, we will get a sequence that spans less than 180. good.

long quaternion

- but suppose \(\cos(\frac{\theta}{2}) < 0 \),
- this means \(|\theta/2| \in [\pi/2..\pi] \)
 - and thus \(|\theta| \in [\pi..2\pi] \).
 - so \(\alpha \theta \) would go more than 180 degrees which we are not going to want during interpolation
- in this case suppose we can simply negate the quaternion, giving us a short quaternion.
- so when we interpolate, before calling the power operator, we should first check the sign of the first coordinate, and conditionally negate the quaternion.
- we call this the conditional negation operator \(cn \).

Operations

- magic trick number 1.
- quat * quat multiply

\[
\begin{bmatrix}
w_1 \\
\hat{c}_1
\end{bmatrix}
\begin{bmatrix}
w_2 \\
\hat{c}_2
\end{bmatrix}
=
\begin{bmatrix}
(w_1w_2 - \hat{c}_1 \cdot \hat{c}_2) \\
(w_1\hat{c}_2 + w_2\hat{c}_1 + \hat{c}_1 \times \hat{c}_2)
\end{bmatrix}
\]

- where \(\cdot \) and \(\times \) are the dot and cross product on 3 dimensional coordinate vectors.
- correctly models rot matrix * rot matrix multiplication!
- unit quat multiplicative inverse

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2})\hat{k}
\end{bmatrix}^{-1}
=
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
-\sin(\frac{\theta}{2})\hat{k}
\end{bmatrix}
\]

- easy to verify

to interpolate

- if we want to interpolate between \(\tilde{w}^tR_0 \) and \(\tilde{w}^tR_1 \)
- and suppose that \(R_0 \) and \(R_1 \) are modeled as \(q_0 \) and \(q_1 \).
- recall the desired interpolation frames in matrix form is \(\tilde{w}^t(R_1R_0^{-1})^\alpha R_0 \)
- so we calculate \((cn(q_1,q_0^{-1}))^\alpha q_0 \)
- this is called slerping (see book for more).

quat vector multiply setup

- magic trick number 2
- start with arbitrary 3-coordinate vector \(\textbf{c} \), representing a a vector.
- left multiply it by a 3 by 3 rotation matrix \(r \), to get

\[\textbf{c}' = r\textbf{c} \]

quat vector multiply setup

- let \(r \) be represented with the unit norm quaternion \(q \)
• use cvec3 \(c \) to create the non unit norm quaternion
\[
\begin{bmatrix}
0 \\
c
\end{bmatrix}
\]

• perform the following triple quaternion multiplication:
\[
q \begin{bmatrix}
0 \\
c
\end{bmatrix} q^{-1}
\]

• tada: result is of form
\[
\begin{bmatrix}
0 \\
c'
\end{bmatrix}
\]

• and we might write this \(qc = c' \)
• in our Quat class, we will give you: \(\text{quat} \ast \text{cvec3} = \text{cvec3} \)

Rbt data structure

• lets now build a data structure to represent an rbt
• recall
\[
A = TR
\begin{bmatrix}
r & t \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
i & t \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
r & 0 \\
0 & 1
\end{bmatrix}
\]

• we can encode this information in the following data type

```cpp
class RigTForm{
    Cvec3 t;
    Quat q;
};
```

• this data will be always interpreted in the \(TR \) order above.

rbt \ast Cvec4

• you will write code for the product of a \(\text{RigTForm} \ A \) and a \(\text{Cvec4} \ c \), (where the last entry is 0/1).
• only translate if the fourth coordinate is 1.
• copy over the fourth coordinate from input to output.

rbt \ast rbt

• let us look at the product of two such rigid body transforms.
\[
\begin{bmatrix}
i & t_1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
r_1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
i & t_2 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
r_2 & 0 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
i & t_1 + r_1 t_2 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
r_1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
r_2 & 0 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
i & t_1 + r_1 t_2 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
r_1 r_2 & 0 \\
0 & 1
\end{bmatrix}
\]

• the result is a new rigid transform with translation \(t_1 + r_1 t_2 \) and rotation \(r_1 r_2 \).

 – use this to code up the \(\ast \) op.
inv operator

- likewise for inverse

\[
\begin{bmatrix}
 i & t \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r & 0 \\
 0 & 1
\end{bmatrix}^{-1} =
\begin{bmatrix}
 r & 0 \\
 0 & 1
\end{bmatrix}^{-1}
\begin{bmatrix}
 i & t \\
 0 & 1
\end{bmatrix}^{-1} =
\begin{bmatrix}
 r^{-1} & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r^{-1} & -t \\
 0 & 1
\end{bmatrix} =
\begin{bmatrix}
 r^{-1} & -(r^{-1}t) \\
 0 & 1
\end{bmatrix} =
\begin{bmatrix}
 i & -(r^{-1}t) \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r^{-1} & 0 \\
 0 & 1
\end{bmatrix}
\]

- the result is a new rigid body transform with translation \(-(r^{-1}t)\) and rotation \(r^{-1}\).

code

- change `skyRbt` and `objectRbt[]` to be `RigTform` data type instead of `Matrix4`.
- in fact almost all of the C++ Matrix4's will get replaced!
- we provide `RigTform makeXRotation(const double ang)`

more code

- in GLSL, you will still use its matrix data type.
- the only Matrix4s that will survive in your C++ code are the projMatrix, the MVM and the NMVM, which get sent to your shaders.
- also, when we need to do object scaling, we cannot capture this in an RigTform, so this will also be a Matrix4 used in creating the MVM.
- to communicate with the vertex shader using 4 by 4 matrices, we provid a procedure `Matrix4 quatToMatrix(quat q)` which turns quat into a 4 by 4 rotation matrix.
- Then, the matrix for a rigid body transform can be computed as

```cpp
matrix4 rigTFormToMatrix(const RigTform& rbt){
    matrix4 T = makeTranslation(rbt.getTranslation());
    matrix4 R = quatToMatrix(rbt.getRotation());
    return T * R;
}
```

- Thus, our drawing code starts with

```cpp
Matrix4 MVM = rigTFormToMatrix(inv(eyeRbt) * objRbt);
\\ can right multiply scales here
Matrix4 NMVM = normalMatrix(MVM);
sendModelViewNormalMatrix(curSS, MVM, NMVM);
```

- we will not need any code that takes a `Matrix4` and converts it to a `Quat`.
- scale will still represented by a `Matrix4`. (more later)
rbt Interpolation

• lets get back to discussing interpolation.
• given two frames, $\bar{\omega}_0 = \bar{\mathbf{w}}^t O_0 \bar{\omega}_1 = \bar{\mathbf{w}}^t O_1$

 - we will write it as matrices $O_0 = (O_0)_T (O_0)_R$ and $O_1 = (O_1)_T (O_1)_R$, but implement it using two
 RigTForm variables.
• interpolate between them by: linearly interpolating the two translation to get: T_α,
• slerp between the rotation quaternions to obtain the rotation R_α,
• set the interpolated RBT O_α to be $T_\alpha R_\alpha$.
• set $\bar{\omega}_\alpha = \bar{\mathbf{w}}^t O_\alpha$.

behavior

• origin of the frame travels in a straight line with constant velocity,

 - read right to left
• the vector basis of the frame rotates with constant angular velocity about a fixed axis.
• physically natural if origin is at center of mass.
• has intrinsic description, so it is left invariant
• note: origin plays special role. if use different object frames for same geometry, we get different interpolation

 - not right invariant (see fig)