frame is important

- in graphics, we often keep track of a number of frames
 - each object, the camera, the world ...
 - so we need to be careful how we use matrices.
- given point and matrix is not enough to specify mapping
- for example point \tilde{p} and the matrix
 $S = \begin{bmatrix}
 2 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$
 - the matrix is non-uniform scaling
- fix a frame \vec{f}^t
 - in this frame $\tilde{p} = \vec{f}^t c$
 - transform with matrix $\vec{f}^t c \Rightarrow \vec{f}^t Sc = \vec{f}^t (Sc) =: \vec{f}^t c'$
 - the stretches by factor of two in first axis of \vec{f}^t
- see fig

other frame

- pick some other frame \vec{a}^r.
- relationship between bases $\vec{a}^r = \vec{f}^t A$.
- express same point as $\tilde{p} = \vec{f}^t c = \vec{a}^r (A^{-1} c) =: \vec{a}^r d$,
- now use matrix S we get $\vec{a}^r d \Rightarrow \vec{a}^r (Sd) =: \vec{a}^r d'$.
 - the same point \tilde{p} is stretched about first axis of \vec{a}^r
- see fig
- also rot fig

left-of rule

- point is transformed with respect to the the frame that appears immediately to the left of the transformation matrix in the expression.
 - We read $\tilde{p} = \vec{f}^t c \Rightarrow \vec{f}^t Sc$ as “\tilde{p} is transformed by S with respect to \vec{f}^t”.
 - We read $\tilde{p} = \vec{a}^r A^{-1} c \Rightarrow \vec{a}^r SA^{-1} c$ as “\tilde{p} is transformed by S with respect to \vec{a}^r”.

more generally

- We read $\tilde{p} = \vec{f}^t ABc \Rightarrow \vec{f}^t ASBc$ as “\tilde{p} is transformed by S with respect to $\vec{f}^t A$”.

1
for frames

- same for transformations of frames
 - We read
 \[\vec{f} \Rightarrow \vec{f} S \]
 - “\(\vec{f} \) is transformed by \(S \) with respect to \(\vec{f} \).”
 - We read
 \[\vec{f} = a^t A^{-1} \Rightarrow a^t S A^{-1} \]
 - as “\(\vec{f} \) is transformed by \(S \) with respect to \(a^t \).”

more generally

- We read
 \[g^t = \vec{f} AB \Rightarrow \vec{f} ASB \]
 - as “\(g^t \) is transformed by \(S \) with respect to \(\vec{f} A \).”

auxiliary frame

- we may wish to transform a frame \(\vec{f} \) in some specific way represented by a matrix \(M \), with respect to some auxiliary frame \(a^t \).
 - For example, we may be using some frame to model the planet Earth, and we now wish the Earth to rotate around the Sun’s frame.
- let \(a^t = \vec{f} A \)
- then The transformed frame can then be expressed as
 \[
 \begin{align*}
 \vec{f} & \quad (1) \\
 = & \quad a^t A^{-1} \quad (2) \\
 \Rightarrow & \quad a^t MA^{-1} \quad (3) \\
 \Rightarrow & \quad \vec{f} AMA^{-1} \quad (4)
 \end{align*}
 \]

multiple transformations

- using the “left of” rule
- example:
 - a rotation matrix \(R \) rotating a point by \(\theta \) degrees about origin
 - translation matrix \(T \), translating the point by one unit in the direction of the first frame axis.

interp 1

- given tform
 \[\vec{f} \Rightarrow \vec{f} TR \]
- break into 2 steps
- In the first step
 \[\vec{f} \Rightarrow \vec{f} T = \vec{f}^t \]
 - \(\vec{f} \) is transformed by \(T \) with respect to \(\vec{f} \) and we call the resulting frame \(\vec{f}^t \).
• In the second step,

\[\vec{f}^T \Rightarrow \vec{f}^T R \]
\[\vec{f}^t \Rightarrow \vec{f}^t R \]

- This is interpreted as: \(\vec{f}^t \) is transformed by \(R \) with respect to \(\vec{f}^t \).

other way

• In the first step

\[\vec{f}^t \Rightarrow \vec{f}^t R = \vec{f}^{ot} \]

\(\vec{f}^t \) is transformed by \(R \) with respect to \(\vec{f}^t \) and we call the resulting frame \(\vec{f}^{ot} \).

• In the second step,

\[\vec{f}^t R \Rightarrow \vec{f}^t TR \]

\(\vec{f}^{ot} \) is transformed by \(T \) with respect to \(\vec{f}^t \).

summary

• both interps can be useful
• left to right, wrt latest (local)
 - right to left, wrt original frame (global)