1. Which of the following sets are linear spaces? Check in each case the three properties characterizing a linear space. Only a brief explanation is needed (can be a picture too):
 a) \(W = \{(x, y, z) \mid x > 0\} \)
 b) \(W = \{(x, y, z) \mid xyz = 0\} \)
 c) \(W = \{(x, y, z) \mid x = 2y = 3z\} \)
 d) \(W = \{(x, y, z) \mid x = y = z + 1\} \)
 e) \(W = \{(x, y, z) \mid x^2 + y^2 - z^2 = 0\} \)
 f) \(W = \{(x, y, z) \mid x, y, z \text{ are rational numbers}\} \)
 g) \(W = \{(x, y, z) \mid x = y = z = 0\} \)

2. a) Write the three dimensional space \(x + 2y + 3z + 4t = 0 \) as a kernel of a \(1 \times 4 \) matrix.
 b) Write the same plane as the image of a \(4 \times 3 \) matrix.
 c) Find a basis for this space.

3. Check whether the given set of vectors is linearly independent
 a) \(\left\{ \begin{bmatrix} 3 \\ 3 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \end{bmatrix} \right\} \)
 b) \(\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \)
 c) \(\left\{ \begin{bmatrix} 3 \\ 16 \end{bmatrix}, \begin{bmatrix} 4 \\ 18 \end{bmatrix}, \begin{bmatrix} 5 \\ 19 \end{bmatrix} \right\} \)

4. Find a basis for the image as well as as a basis for the kernel of the following matrices
 a) \(\begin{bmatrix} 7 & 0 & 7 \\ 2 & 3 & 8 \\ 9 & 0 & 9 \\ 5 & 6 & 17 \end{bmatrix} \)
 b) \(\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \)
 c) \(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \)

5. The orthogonal complement of a subspace \(V \) of \(R^n \) is the set \(V^\perp \) of all vectors in \(R^n \) that are perpendicular to every single vector in \(V \). Find a basis for the orthogonal complement in each case:
 a) The line \(L \) in \(R^5 \) spanned by \(\begin{bmatrix} 1 & 2 & 2 & 1 & 1 \end{bmatrix}^T \). (If \(v \) is a row
vector v^T denotes the corresponding column vector).

b) The plane Σ in \mathbb{R}^4 spanned by $\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T$.

c) The space $V = \{(0, 0)\}$ in the two-dimensional plane \mathbb{R}^2.

Basis

V is a **linear space** if 0 is in V, if $v + w$ is in V for all v, w in V and if λv is in V for every v in V and every λ in \mathbb{R}. Examples: kernels $V = \ker(A)$ or images $V = \text{im}(A)$ are linear spaces. If V, W are linear spaces and V is a subset of W, then V is called a **linear subspace** of W. A line through the origin for example is a linear subspace of \mathbb{R}^3. A set \mathcal{B} of vectors $\{v_1, \ldots, v_n\}$ **spans** V if every $v \in V$ is a sum of vectors in \mathcal{B}. A set \mathcal{B} is linear independent if $a_1v_1 + \cdots + a_nv_n = 0$ implies $a_1 = \cdots = a_n = 0$. It is a **basis** of V if it both spans V and is linearly independent. Example: the standard basis vectors $\{e_1, \ldots, e_n\}$ form a basis of \mathbb{R}^n.

How do we determine whether a set of vectors is a basis of \mathbb{R}^n? Place the vectors of \mathcal{B} as columns in a matrix A, then row reduce A. If every column of a matrix has a leading 1, then the set of column vectors \mathcal{B} are linearly independent and the kernel of A is $\{0\}$. How do we determine whether a set of vectors is linearly independent? Place the vectors as columns of a matrix and row reduce. If there is no free variable, then we have linear independence. Example: three vectors in \mathbb{R}^3 are linearly independent if they are not in a common plane.