Homework 23: Symmetric matrices

This homework is due on Monday, April 2, respectively on Tuesday, April 3, 2018.

1. Give a reason why it’s true or provide a counterexample.
 a) The product of two symmetric matrices is symmetric.
 b) The sum of two symmetric matrices is symmetric.
 c) The sum of two anti-symmetric matrices is anti-symmetric.
 d) The inverse of an invertible symmetric matrix is symmetric.
 e) If B is an arbitrary $n \times m$ matrix, then $A = B^T B$ is symmetric.
 f) If A is similar to B and A is symmetric, then B is symmetric.
 g) $A = SBS^{-1}$ with $S^T S = I_n$, A symmetric $\Rightarrow B$ is symmetric.
 h) Every symmetric matrix is diagonalizable.
 i) Only the zero matrix is both anti-symmetric and symmetric.

2. Find all the eigenvalues and eigenvectors of the matrix

 $$A = \begin{bmatrix}
 2019 & 2 & 3 & 4 & 5 \\
 2 & 2022 & 6 & 8 & 10 \\
 3 & 6 & 2027 & 12 & 15 \\
 4 & 8 & 12 & 2034 & 20 \\
 5 & 10 & 15 & 20 & 2043 \\
 \end{bmatrix}.$$

3. a) Find the eigenvalues and orthonormal eigenbasis of $A = \begin{bmatrix}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.

 b) Find $\det(\begin{bmatrix}7 & 2 & 2 & 2 & 2 \\ 2 & 7 & 2 & 2 & 2 \\
 2 \end{bmatrix})$ using eigenvalues.
Group the matrices which are similar.

\[
A = \begin{bmatrix}
 2 & 1 & 0 & 0 \\
 0 & 2 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
\end{bmatrix} \quad B = \begin{bmatrix}
 1 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 0 & 0 & 1 & 1 \\
 0 & 0 & 1 & 1 \\
\end{bmatrix} \quad C = \begin{bmatrix}
 2 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 2 \\
 0 & 0 & 1 & 0 \\
\end{bmatrix} \quad D = \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

Find the eigenvalues and eigenvectors of the Laplacian of the Bunny graph. The Laplacian of a graph with \(n \) nodes is the \(n \times n \) matrix \(A \) which for \(i \neq j \) has \(A_{ij} = -1 \) if \(i, j \) are connected and 0 if not. The diagonal entries \(A_{ii} \) are chosen so that each row add up to 0.

\[
A = \begin{bmatrix}
 2 & -1 & -1 & 0 & 0 \\
 -1 & 2 & -1 & 0 & 0 \\
 -1 & -1 & 4 & -1 & -1 \\
 0 & 0 & -1 & 1 & 0 \\
 0 & 0 & -1 & 0 & 1 \\
\end{bmatrix}
\]

Symmetric matrices

\(A \) is **symmetric** if \(A^T = A \) and **anti-symmetric** if \(A^T = -A \). Projections or reflections are symmetric. Symmetric matrices appear in physics or statistics: observables like energy, position or momentum matrices are symmetric, correlation matrices are symmetric. In multi-variable calculus the Hessian matrix consisting of the second derivatives is symmetric. The spectral theorem tells that a symmetric matrix has real eigenvalues, that it has an orthonormal eigenbasis and that can be diagonalized as \(B = S^{-1}AS \) with an orthogonal matrix \(S \).