Homework 27: Differential operators

This homework is due on Friday, April 13, respectively on Tuesday, April 17, 2018.

The linear spaces C^∞, C_{per}^∞, P and T are defined on the next page.

1. The linear map $Df(x) = f'(x)$ is an example of a **differential operator**. It has the constant functions as the kernel. This means that there is no unique inverse. One inverse is $S f(x) = D^{-1} f(x) = \int_0^x f(t) \, dt$.
 a) Evaluate $D \sin$, $D \cos$, $D \tan$, $S 1/(1 + x^2)$, $S \tan$.
 b) Can you find an eigenfunction (= eigenvector) f of D to the eigenvalue -101?
 c) Verify that if f is an eigenfunction of D to the eigenvalue 2, then f is also an eigenfunction of $D^4 - 2D + 77$. What is the eigenvalue?

2. a) Find a solution of the equation $D^2 f = 2x + 1/x$ on the space $C^\infty((0, \infty))$ of all smooth functions on the positive real axes.
 b) Find two linearly independent solutions of the eigenvalue equation $D^2 f = -10'000 f$ on the space C_{per}^∞.

3. a) Find a basis for the kernel of D^3 on the linear space P of polynomials.
 b) Find the image $D^3 + D + 1$ on the linear space P?
 c) Find the eigenvalues of $D^3 + D + 1$ on the space C_{per}^∞ of smooth periodic functions with period 2π.
 d) Find the kernel of $Af = (D - \sin(t)) f(t)$ on C_{per}^∞.

4. a) Check that $Q f(x) = xf(x)$ and $P f(x) = iD f(x)$ satisfy the Heisenberg commutation relation: $(PQ - QP) f = i f$.
 b) Check that for any real ω, the function $e^{i\omega t}$ is an eigenfunction of iD in C^∞.
 c) Check that on C_{per}^∞, only the functions $e^{i\omega t}$ with integer ω are eigenfunctions. (Momentum ω is quantized.)
a) Verify that \(Sf(x) = \int_0^x f(t) \, dt \) is a linear operator on the linear space \(C^\infty \) of smooth functions.
b) Show that \(DSf(x) = f(x) \) and c) show that \(SDf(x) = f(x) - f(0) \). What is the theorem?

Differential operators

A function is **smooth** if it can be differentiated arbitrarily often. The space \(C^\infty \) of real valued smooth functions is a linear space: if \(f, g \) are in \(C^\infty \), then \(f + g \), the zero function 0 is in \(C^\infty \) and \(\lambda f \) is in \(C^\infty \) for every real \(\lambda \). \(C^\infty \) contains the linear space \(P \) of all **polynomials**. The space \(C^\infty_{\text{per}} \) of smooth periodic functions with period \(2\pi \) forms a linear space too. It contains the linear subspace \(T \) of trigonometric polynomials. The space \(P \) of polynomials is spanned by \(\{1, x, x^2, x^3, \ldots\} \) and the space \(T \) of trigonometric polynomials is spanned by \(\{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \ldots\} \). They are infinite dimensional. The space \(P_3 \) of cubic polynomials \(d + cx + bx^2 + ax^3 \) is 4-dimensional as it has the basis \(\{1, x, x^2, x^3\} \). The transformation map \(D : f \rightarrow f' \) is linear: it satisfies \(D(f + g) = Df + Dg \), \(D(\lambda f) = \lambda Df \) and \(D0 = 0 \). We call any polynomial of \(D \) like \(D^2 - D + 1 \) a **differential operator**. The linear map \(D \) on \(C^\infty \) has as the kernel the one dimensional space of constant functions. What are the eigenvalues and eigenvectors of \(D \)? Because \(De^{\lambda x} = \lambda e^{\lambda x} \), every real number \(\lambda \) is an eigenvalue on \(C^\infty \). The linear map \(D \) has no real eigenvalues on \(C^\infty_{\text{per}} \) but complex eigenvalues \(in \) as \(De^{inx} = ine^{inx} \), where \(n \) is an integer. The fact that they are quantized is the reason why quantum mechanics is called “quantum” (the operator \(P = iD \) is called “momentum”) and \(Qf = xf \) “position”). The square \(-D^2\) has now real eigenvalues \(n^2 \), where \(n \) is an integer. It is the energy operator of a particle on the circle. The eigenfunctions are \(1, \sin(nx) \) and \(\cos(nx) \). We are interested in \(D \) because it will allow us to solve differential equations like \((D^2 + 5D + 6)f = \sin(5x) \).