Notes on the Negative Binomial distribution for word occurrences

Edoardo Airoldi, Carnegie Mellon University

(eairoldi@cs.cmu.edu)

The Negative-Binomial distribution can be obtained from expansion of $(Q - P)^{-r}$, where Q = (1 + P), P > 0, and and r is positive real. Note that P need not be in (0, 1). The probability distribution is then

$$P(X=x) = \binom{r+x-1}{r-1} \left(1 - \frac{P}{Q}\right)^r \left(\frac{P}{Q}\right)^x, \quad x \ge 0.$$

In this parameterization, mean = rP, and variance = rP(1+P).

Airoldi et al. (2005) set $r = \kappa$, $P = \omega \delta$ and $Q = (1 + P) = (1 + \omega \delta)$. Keeping r instead of κ , we obtain

$$P(X = x) = \binom{r+x-1}{r-1} \left(1 - \frac{\omega\delta}{1+\omega\delta}\right)^r \left(\frac{\omega\delta}{1+\omega\delta}\right)^x$$
$$= \binom{r+x-1}{r-1} (1+\omega\delta)^{-(x+r)} (\omega\delta)^x, \quad x \ge 0$$

where $\omega > 0$, $\delta > 0$, r > 0. In order to expose the connections between Poisson and Negative-Binomial, we introduce a redundant parameter $\mu = r\delta$. The Negative Binomial with parameters $(r, \omega\mu, \omega\delta)$ reduces to a Poisson with parameter $(\omega\mu)$ as $r \to \infty$ and $\delta \to 0$, for a fixed μ . The Negative-Binomial with parameters $(r, \omega\mu, \omega\delta)$ has mean $= \omega\mu$, and variance $= \frac{\mu}{\delta}\omega\delta(1 + \omega\delta) = \omega\mu(1 + \omega\delta)$, that is, the same mean as the corresponding Poisson, reduced limit of the Negative-Binomial, with an extra variability factor, $(1 + \omega\delta)$. Thus the parameter δ is referred to as the extra-Poissonness parameter.

The standard parameterization,

$$Pr(X = x) = \binom{r+x-1}{r-1} p^r (1-p)^x, \quad x \ge 0,$$

is obtained by setting $p = \left(1 - \frac{P}{Q}\right) = \left(1 - \frac{P}{1+P}\right)$, since $\frac{P}{Q} \in (0, 1)$.

The parameter ω is used to condition on the size of the documents in the $(r, \omega\mu, \omega\delta)$ parameterization. Let us consider the Poisson case, where the rate $\lambda = \omega\mu$, and let us assume that our observations are number of times a certain word occurs in a set of documents, with possibly different word-lengths. The new parameterization $\omega\mu$ breaks the rate into two parts: μ , which is the rate of occurrence of the word under study, say, in a thousand (or ℓ) consecutive words of text, i.e., the length of the reference text in terms of number of words; and ω , which is the length of a document expressed as a pure number, multiple of the word-length of the reference text, e.g., $\omega = 1.67$ for a text 1670 word long if the reference text is a thousand words, i.e., $\ell = 1000$. This allows us to express the rate λ as the rate of occurrence of a word in a text of length equal to that of the reference text, μ , conditionally on the desired, or observed, length of the text, ω , expressed as a multiple of the word-length of the reference text.

References

E.M. Airoldi, A.G. Anderson, S.E. Fienberg, K.K. Skinner. Who wrote Ronald Reagan's radio addresses? *Bayesian Analysis.* To appear in 2005.

N.L. Johnson, S. Kotz, A.W. Kemp. Univariate Discrete Distributions. Wiley, 1993.

F. Mosteller, D.L. Wallace. Inference and Disputed Authorship: The Federalist. Addison-Wesley, 1964.

F. Mosteller, D.L. Wallace. Applied Bayesian and Classical Inference: The Case of "The Federalist" Papers. Springer-Verlag, 1984.