Overview of graduate admissions

- **BCS is a very diverse department; faculty interests cover a broad range of topics:**
 - Mathematical models of cognition / Human brain imaging
 - Neurophysiology in behaving non-human primates
 - Circuit analysis in animal models
 - Cellular/network level analysis of neuronal function
 - Synaptic function, plasticity, development
- Interface with the Biology department through the Molecular and Cellular Neuroscience Graduate Program
- Our graduate program applicants have a similarly broad range of interests

Faculty ‘tracks’ in BCS

- Cognitive
- Computational
- Systems
- Cell/Molecular

Each track has a leader. The tracks are administrative only.

Students can conduct research with any faculty member.

Applicants who fall between the cracks are handled by ‘cross-track’ leaders.

Each track and cross track is given an annual ‘quota’ of invitees based in current department needs and resources.

Systems neuroscience track

- **Diverse range of techniques and model systems**
 - Electrophysiology, optogenetics, two-photon imaging, new fMRI imaging techniques, TMS, high-throughput behavioral analysis, localized brain cooling, intracellular recording in behaving animals, genetic manipulation (viral and transgenic)
- A common theme is technical and quantitative sophistication
The future of systems neuroscience: Reverse engineering the brain

- New experimental techniques for recording and manipulating neural circuits
 - Physics, chemistry, electrical engineering, genetics

- New ways of thinking about brain circuits and computation
 - Physics, mathematics, computer science

- New ways of analyzing large quantities of data
 - Computer science, mathematics

What I look for in applicants

- A strong record of coursework in quantitative methods and physical sciences
 - Math, computer science, electrical engineering, physics, computer programming skills

- Prior laboratory research experience

Academic preparation

- Strong record of coursework in quantitative methods and physical sciences
- Math, computer science, electrical engineering, physics, computer programming skills
- Prior laboratory research experience
Statement of Objectives

Please note instructions carefully before you complete this form.

*Type or print using black ink.
*Use neat and of necessary or square form.
*Keep a copy for your file. You may also wish to provide copies to your supervisor before they complete their forms.
*Retain this form with the completed application to the appropriate MIT department (see pages 4–18).

Since before I can remember, I’ve been fascinated with figuring out how things work. I vividly recall the day my family brought home their first personal computer. Unlike most four-year-olds, I wasn’t contented merely to play the numerous educational games available for the machine. Instead, I wanted to figure out what the computer could do and how it could...

New quantitative methods course

Proposed Topics:

Weeks 1 – 6: Statistics and Hypothesis Testing
- **Week 1 & 2:** Introduction/Data Basics
 - Experimental Design
 - Descriptive Statistics (Variance, Std Dev, Unrelated, Independent etc.)
 - Probability Theory
 - Probability Distributions
- **Central Limit Theorem**
- **Confidence Intervals**
- **Week 3:** Signal Detection Theory (ch. 6 in MATLAB for Neuroscientists)
- **Week 4 & 5:** Basics of Hypothesis Testing
 - Parametric Tests
 - Nonparametric Tests
 - Tests for Categorical Data
 - ANOVA
- **Week 6:** Correlation
 - Intro to fitting data, least squares
 - Regression

(Assignment topics can also include Neural Encoding (ch 13) and Neural Decoding (ch 16, 17))

‘Hardening’ the undergraduate curriculum

- Additional requirements for quantitative coursework
 - Differential equations
 - Statistics
- Introduction to computer programming (Matlab)
- More quantitative approach to undergraduate neuroscience undergraduate coursework
 - Quantitative problem sets
 - Integration of Matlab programming for data analysis, etc.

New quantitative methods course

Weeks 7 – 14: Linear algebra and Differential Equations applied to BCS

- **Week 7:** Linear Systems
 - Linear dependence/independence
 - Inverse/Pseudo-inverse
- **Week 8:** Eigenvalue/Eigenvector
 - SVD
- **Week 9:** PCA (ch 14)
- **Week 10:** 1d and 2d Frequency Analysis (ch 7 and 8)
- **Week 11:** Information Theory (ch 15)
- **Week 12:** Review of differential equations
- **Week 13:** Neuroscience examples using differential equations such as:
 - Models of ion channels (ch 19)
 - Models of single neurons (ch 20)
 - Decision Theory (ch 24)
Introduction to Computational Neuroscience

The systems neuroscience track at MIT now recruits students with a strong quantitative background in math, physical sciences and engineering.

Hardening the undergraduate curriculum: prepare students ready to attack the highly technical next-generation problems in neuroscience.