Balanced Search Trees

Review: Balanced Trees

• A tree is *balanced* if, for each node, the node’s subtrees have the same height or have heights that differ by 1.

• For a balanced tree with n nodes:
 • height = \(O(\log_2 n) \).
 • gives a worst-case time complexity that is logarithmic (\(O(\log_2 n) \))
 • the best worst-case time complexity for a binary search tree

• With a binary search tree, there's no way to ensure that the tree remains balanced.
 • can degenerate to \(O(n) \) time
2-3 Trees

- A 2-3 tree is a balanced tree in which:
 - all nodes have equal-height subtrees (perfect balance)
 - each node is either
 - a 2-node, which contains one data item and 0 or 2 children
 - a 3-node, which contains two data items and 0 or 3 children
 - the keys form a search tree

- Example:

![2-3 Tree Diagram]

Search in 2-3 Trees

- Algorithm for searching for an item with a key \(k \):
 - if \(k \) == one of the root node’s keys, you’re done
 - else if \(k < \) the root node’s first key
 - search the left subtree
 - else if the root is a 3-node and \(k < \) its second key
 - search the middle subtree
 - else
 - search the right subtree

- Example: search for 87

![Search in 2-3 Tree Example]
Insertion in 2-3 Trees

- Algorithm for inserting an item with a key k:
 - search for k, but don’t stop until you hit a leaf node
 - let L be the leaf node at the end of the search
 - if L is a 2-node
 - add k to L, making it a 3-node
 - else if L is a 3-node
 - split L into two 2-nodes containing the items with the smallest and largest of: k, L’s 1st key, L’s 2nd key
 - the middle item is “sent up” and inserted in L’s parent

example: add 52

Example 1: Insert 8

- Search for 8:

- Add 8 to the leaf node, making it a 3-node:
Example 2: Insert 17

• Search for 17:

```
28 61
  /   \
10    40
   / | \
  3 14 20
```

• Split the leaf node, and send up the middle of 14, 17, 20 and insert it the leaf node’s parent:

```
28 61
  /   \
10    40
   / | \
  3 17
   / |
  14 20
```

Example 3: Insert 92

• Search for 92:

```
28 61
  /   \
10    40
   / | \
  3 14 20
```

• Split the leaf node, and send up the middle of 92, 93, 97 and insert it the leaf node’s parent:

```
28 61
  /   \
10    40
   / | \
  3 92
   / |
  34 51
```

• In this case, the leaf node’s parent is also a 3-node, so we need to split is as well...
Splitting the Root Node

- If an item propagates up to the root node, and the root is a 3-node, we split the root node and create a new, 2-node root containing the middle of the three items.
- Continuing our example, we split the root's right child:
 - Then we split the root, which increases the tree's height by 1, but the tree is still balanced.
 - This is only case in which the tree's height increases.

Efficiency of 2-3 Trees

- A 2-3 tree containing n items has a height <= log₂n.
- Thus, search and insertion are both O(log n).
 - a search visits at most log₂n nodes
 - an insertion begins with a search; in the worst case, it goes all the way back up to the root performing splits, so it visits at most 2log₂n nodes
- Deletion is tricky – you may need to coalesce nodes! However, it also has a time complexity of O(log n).
- Thus, we can use 2-3 trees for a O(log n)-time data dictionary.
External Storage

• The balanced trees that we’ve covered don't work well if you want to store the data dictionary externally – i.e., on disk.

• Key facts about disks:
 • data is transferred to and from disk in units called blocks, which are typically 4 or 8 KB in size
 • disk accesses are slow!
 • reading a block takes ~10 milliseconds (10^{-3} sec)
 • vs. reading from memory, which takes ~10 nanoseconds
 • in 10 ms, a modern CPU can perform millions of operations!

B-Trees

• A B-tree of order m is a tree in which each node has:
 • at most $2m$ entries (and, for internal nodes, $2m + 1$ children)
 • at least m entries (and, for internal nodes, $m + 1$ children)
 • exception: the root node may have as few as 1 entry
 • a 2-3 tree is essentially a B-tree of order 1

• To minimize the number of disk accesses, we make m as large as possible.
 • each disk read brings in more items
 • the tree will be shorter (each level has more nodes), and thus searching for an item requires fewer disk reads

• A large value of m doesn’t make sense for a memory-only tree, because it leads to many key comparisons per node.

• These comparisons are less expensive than accessing the disk, so large values of m make sense for on-disk trees.
Example: a B-Tree of Order 2

- Order 2: at most 4 data items per node (and at most 5 children)
- The above tree holds the same keys as one of our earlier 2-3 trees, which is shown again below:

Search in B-Trees

- Similar to search in a 2-3 tree.
- Example: search for 87
Insertion in B-Trees

• Similar to insertion in a 2-3 tree:
 search for the key until you reach a leaf node
 if a leaf node has fewer than $2m$ items, add the item
 to the leaf node
 else split the node, dividing up the $2m + 1$ items:
 the smallest m items remain in the original node
 the largest m items go in a new node
 send the middle entry up and insert it (and a pointer to
 the new node) in the parent

• Example of an insertion without a split: insert 13

Splits in B-Trees

• Insert 5 into the result of the previous insertion:

 • The middle item (the 10) was sent up to the root.
 It has no room, so it is split as well, and a new root is formed:

 • Splitting the root increases the tree’s height by 1, but the tree
 is still balanced. This is only way that the tree’s height increases.
 • When an internal node is split, its $2m + 2$ pointers are split evenly
 between the original node and the new node.
Analysis of B-Trees

- All internal nodes have at least \(m \) children (actually, at least \(m+1 \)).
- Thus, a B-tree with \(n \) items has a height \(\leq \log mn \), and search and insertion are both \(\mathcal{O}(\log mn) \).
- As with 2-3 trees, deletion is tricky, but it’s still logarithmic.

Search Trees: Conclusions

- Binary search trees can be \(\mathcal{O}(\log n) \), but they can degenerate to \(\mathcal{O}(n) \) running time if they are out of balance.
- 2-3 trees and B-trees are balanced search trees that guarantee \(\mathcal{O}(\log n) \) performance.
- When data is stored on disk, the most important performance consideration is reducing the number of disk accesses.
- B-trees offer improved performance for on-disk data dictionaries.