
Heaps and Priority Queues

Computer Science E-119
Harvard Extension School

Fall 2012

David G. Sullivan, Ph.D.

State-Space Search Revisited

• Earlier, we considered three algorithms for state-space search:
• breadth-first search (BFS)
• depth-first search (DFS)
• iterative-deepening search (IDS)

• These are all uninformed search algorithms.
• always consider the states in a certain order
• do not consider how close a given state is to the goal

• 8 Puzzle example: 3 1 2
4 5

6 7 8

3 1 2
4 7 5
6 8

3 2
4 1 5
6 7 8

3 1 2
4 5

6 7 8

3 1 2
4 5
6 7 8

 its successors

 initial state

one step away from the goal,
but the uninformed algorithms
won’t necessarily consider it next

Informed State-Space Search

• Informed search algorithms attempt to consider more promising
states first.

• These algorithms associate a priority with each successor state
that is generated.

• base priority on an estimate of nearness to a goal state
• when choosing the next state to consider, select the one

with the highest priority

• Use a priority queue to store the yet-to-be-considered search
nodes. Key operations:

• insert: add an item to the priority queue, ordering it
according to its priority

• remove: remove the highest priority item

• How can we efficiently implement a priority queue?

• use a type of binary tree known as a heap

Complete Binary Trees

• A binary tree of height h is complete if:
• levels 0 through h – 1 are fully occupied
• there are no “gaps” to the left of a node in level h

• Complete:

• Not complete (= missing node):

Representing a Complete Binary Tree

• A complete binary tree has a simple array representation.

• The nodes of the tree are stored in the
array in the order in which they would be
visited by a level-order traversal
(i.e., top to bottom, left to right).

• Examples:

a[0]

a[1] a[2]

a[3] a[4] …

26 12 32 4 18 28

10 8 17 14 326

12

4 18

32

28

10

8

14 3

17

• The root node is in a[0]

• Given the node in a[i]:

• its left child is in a[2*i + 1]

• its right child is in a[2*i + 2]

• its parent is in a[(i – 1)/2]

(using integer division)

• Examples:

• the left child of the node in a[1] is in a[2*1 + 1] = a[3]

• the right child of the node in a[3] is in a[2*3 + 2] = a[8]

• the parent of the node in a[4] is in a[(4–1)/2] = a[1]

• the parent of the node in a[7] is in a[(7–1)/2] = a[3]

a[0]

a[1]

a[4] …a[3]

a[7] a[8]

a[2]

a[5] a[6]

Navigating a Complete Binary Tree in Array Form

Heaps

• Heap: a complete binary tree in which each interior node is
greater than or equal to its children

• Examples:

• The largest value is always at the root of the tree.

• The smallest value can be in any leaf node – there’s no
guarantee about which one it will be.

• Strictly speaking, the heaps that we will use are max-at-top
heaps. You can also define a min-at-top heap, in which every
interior node is less than or equal to its children.

28

16

12 8

20

5

18

8

3 7

2

12

7 10

A Class for Items in a Heap
public class HeapItem {

private Object data;
private double priority;
...
public int compareTo(HeapItem other) {

// error-checking goes here…
double diff = priority – other.priority;
if (diff > 1e-6)

return 1;
else if (diff < -1e-6)

return -1;
else

return 0;
}

}

• HeapItem objects group together a data item and its priority.

A Class for Items in a Heap (cont.)

public int compareTo(HeapItem other) {
// error-checking goes here…
double diff = priority – other.priority;
if (diff > 1e-6)

return 1;
else if (diff < -1e-6)

return -1;
else

return 0;
}

• The compareTo method returns:

• -1 if the calling object has a lower priority than the other object

• 1 if the calling object has a higher priority than the other object

• 0 if they have the same priority

• numeric comparison comparison using compareTo
item1 < item2 item1.compareTo(item2) < 0
item1 > item2 item1.compareTo(item2) > 0
item1 == item2 item1.compareTo(item2) == 0

Heap Implementation (~cscie119/examples/heaps/Heap.java)

public class Heap {
private HeapItem[] contents;
private int numItems;

public Heap(int maxSize) {
contents = new HeapItem[maxSize];
numItems = 0;

}
…

}

a Heap object

contents

numItems 6

... ...

28 16 20 12 8 5

28

16

12 8

20

5
Note: we're just showing the priorities
of the items, and we're showing them
as integers.

Removing the Largest Item from a Heap

• Remove and return the item in the root node.

• In addition, we need to move the largest remaining item to the
root, while maintaining a complete tree with each node >= children

• Algorithm:
1. make a copy of the largest item
2. move the last item in the heap

to the root (see diagram at right)
3. “sift down” the new root item

until it is >= its children (or it’s a leaf)
4. return the largest item

sift down
the 5:

28

20

16 8

12

5

5

20

16 8

12

20

5

16 8

12

20

16

5 8

12

Sifting Down an Item

• To sift down item x (i.e., the item whose key is x):
1. compare x with the larger of the item’s children, y
2. if x < y, swap x and y and repeat

• Other examples:
sift down
the 10:

sift down
the 7:

10

7

3 5

18

8 6

18

7

3 5

10

8 6

7

26

15 18

23

10

26

7

15 18

23

10

26

18

15 7

23

10

siftDown() Method
private void siftDown(int i) {

HeapItem toSift = contents[i];

int parent = i;
int child = 2 * parent + 1;
while (child < numItems) {

// If the right child is bigger, compare with it.
if (child < numItems - 1 &&
contents[child].compareTo(contents[child + 1]) < 0)

child = child + 1;

if (toSift.compareTo(contents[child]) >= 0)
break; // we’re done

// Move child up and move down one level in the tree.
contents[parent] = contents[child];
parent = child;
child = 2 * parent + 1;

}

contents[parent] = toSift;
}

• We don’t actually swap
items. We wait until the
end to put the sifted item
in place.

26

18

15 7

23

10

toSift: 7
parent child

0 1

1 3

1 4

4 9
0 1 2 3 4 5

26 18 23 15 7 10

remove() Method
public HeapItem remove() {

HeapItem toRemove = contents[0];

contents[0] = contents[numItems - 1];
numItems--;
siftDown(0);

return toRemove;
}

0 1 2 3 4 5

28 20 12 16 8 5

numItems: 6
toRemove: 28

28

20

16 8

12

5

0 1 2 3 4 5

5 20 12 16 8 5

numItems: 5
toRemove: 28

5

20

16 8

12

0 1 2 3 4 5

20 16 12 5 8 5

numItems: 5
toRemove: 28

20

16

5 8

12

Inserting an Item in a Heap

• Algorithm:
1. put the item in the next available slot (grow array if

needed)
2. “sift up” the new item

until it is <= its parent (or it becomes the root item)

• Example: insert 35
put it in
place:

sift it up:
20

16

5 8

20

16

5 8

35

16

5 8

20

16

5 8

12

20

16

5 8

12

35

12

35

35

12

20

12

insert() Method
public void insert(HeapItem item) {

if (numItems == contents.length) {
// code to grow the array goes here…

}

contents[numItems] = item;
siftUp(numItems);
numItems++;

}

0 1 2 3 4 5

20 16 12 5 8

numItems: 5
item: 35

20

16

5 8

12

0 1 2 3 4 5

20 16 12 5 8 35

numItems: 5
item: 35

20

16

5 8

0 1 2 3 4 5

35 16 20 5 8 12

numItems: 6

35

16

5 8

12

35

20

12

Converting an Arbitrary Array to a Heap

• Algorithm to convert an array with n items to a heap:
1. start with the parent of the last element:

contents[i], where i = ((n – 1) – 1)/2 = (n – 2)/2
2. sift down contents[i] and all elements to its left

• Example:

• Last element’s parent = contents[(7 – 2)/2] = contents[2].
Sift it down:

0 1 2 3 4 5 6

5 16 8 14 20 1 26
5

16

14 20

8

1 26

5

16

14 20

8

1 26

5

16

14 20

26

1 8

Converting an Array to a Heap (cont.)

• Next, sift down contents[1]:

• Finally, sift down contents[0]:

5

20

14 16

26

1 8

26

20

14 16

5

1 8

5

16

14 20

26

1 8

5

20

14 16

26

1 8

26

20

14 16

8

1 5

Creating a Heap from an Array
public class Heap {

private HeapItem[] contents;
private int numItems;
...

public Heap(HeapItem[] arr) {
// Note that we don't copy the array!
contents = arr;
numItems = arr.length;
makeHeap();

}

private void makeHeap() {
int last = contents.length - 1;
int parentOfLast = (last - 1)/2;
for (int i = parentOfLast; i >= 0; i--)

siftDown(i);
}
...

}

Time Complexity of a Heap

• A heap containing n items has a height <= log2n.

• Thus, removal and insertion are both O(log n).
• remove: go down at most log2n levels when sifting down

from the root, and do a constant number of operations per level

• insert: go up at most log2n levels when sifting up to the root,
and do a constant number of operations per level

• This means we can use a heap for a O(log n)-time priority queue.

• Time complexity of creating a heap from an array?

5

16

14 20

8

1 26

Using a Heap to Sort an Array

• Recall selection sort: it repeatedly finds the smallest remaining
element and swaps it into place:

…

• It isn’t efficient (O(n2)), because it performs a linear scan to
find the smallest remaining element (O(n) steps per scan).

• Heapsort is a sorting algorithm that repeatedly finds the largest
remaining element and puts it in place.

• It is efficient (O(n logn)), because it turns the array into a heap,
which means that it can find and remove the largest remaining
element in O(logn) steps.

0 1 2 3 4 5 6

5 16 8 14 20 1 26

0 1 2 3 4 5 6

1 5 8 14 20 16 26

0 1 2 3 4 5 6

1 16 8 14 20 5 26

Heapsort (~cscie119/examples/heaps/HeapSort.java)

public class HeapSort {
public static void heapSort(HeapItem[] arr) {

// Turn the array into a max-at-top heap.
// The heap object will hold a reference to the
// original array, with the elements rearranged.
Heap heap = new Heap(arr);

int endUnsorted = arr.length - 1;
while (endUnsorted > 0) {

// Get the largest remaining element and put it
// where it belongs -- at the end of the portion
// of the array that is still unsorted.
HeapItem largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

}
}

6
... ...

28 16 20 12 8 5
arr

heap

Heapsort Example

• Sort the following array:

• Here’s the corresponding complete tree:

• Begin by converting it to a heap:

13

6

10 3

45

22 5

13

10

6 3

45

22 5

45

10

6 3

22

13 5

0 1 2 3 4 5 6

13 6 45 10 3 22 5

13

6

10 3

45

22 5

no change, because
45 >= its children

sift down
45

sift down
6

sift down
13

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• Remove the largest item and put it in place:

45

10

6 3 13

22

10

6 3

13

5

22

10

6 3

13

5

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

toRemove: 45
0 1 2 3 4 5 6

22 10 13 6 3 5 5

endUnsorted: 6
largestRemaining: 45

0 1 2 3 4 5 6

22 10 13 6 3 5 45

endUnsorted: 5

22

5

5
remove()

copies 45;
moves 5
to root

remove()
sifts down 5;
returns 45

heapSort() puts 45 in place;
decrements endUnsorted

Heapsort Example (cont.)

22

10

6 3

13

5

13

10

6 3

5

13

10

6 3

5

toRemove: 22
0 1 2 3 4 5 6

13 10 5 6 3 5 45

endUnsorted: 5
largestRemaining: 22

0 1 2 3 4 5 6

13 10 5 6 3 22 45

endUnsorted: 4

5

13

10

6 3

5

10

6

3

5

10

6

3

5

toRemove: 13
0 1 2 3 4 5 6

10 6 5 3 3 22 45

endUnsorted: 4
largestRemaining: 13

0 1 2 3 4 5 6

10 6 5 3 13 22 45

endUnsorted: 3

3

copy 22;
move 5
to root

sift down 5;
return 22

put 22
in place

copy 13;
move 3
to root

sift down 3;
return 13

put 13
in place

Heapsort Example (cont.)

10

6

3

5

6

3 5

6

3 5

toRemove: 10
0 1 2 3 4 5 6

6 3 5 3 13 22 45

endUnsorted: 3
largestRemaining: 10

0 1 2 3 4 5 6

6 3 5 10 13 22 45

endUnsorted: 2

6

3 5

5

3

5

3

toRemove: 6
0 1 2 3 4 5 6

5 3 5 10 13 22 45

endUnsorted: 2
largestRemaining: 6

0 1 2 3 4 5 6

5 3 6 10 13 22 45

endUnsorted: 1

3

copy 6;
move 5
to root

sift down 5;
return 6

put 6
in place

copy 10;
move 3
to root

sift down 3;
return 10

put 10
in place

5

Heapsort Example (cont.)

5

3

3 3

toRemove: 5
0 1 2 3 4 5 6

3 3 6 10 13 22 45

endUnsorted: 1
largestRemaining: 5

0 1 2 3 4 5 6

3 5 6 10 13 22 45

endUnsorted: 0

3copy 5;
move 3
to root

sift down 3;
return 5

put 5
in place

How Does Heapsort Compare?

• Heapsort matches mergesort for the best worst-case time
complexity, but it has better space complexity.

• Insertion sort is still best for arrays that are almost sorted.

• heapsort will scramble an almost sorted array before sorting it

• Quicksort is still typically fastest in the average case.

algorithm best case avg case worst case extra
memory

selection sort O(n2) O(n2) O(n2) O(1)

insertion sort O(n) O(n2) O(n2) O(1)

Shell sort O(n log n) O(n1.5) O(n1.5) O(1)

bubble sort O(n2) O(n2) O(n2) O(1)

quicksort O(n log n) O(n log n) O(n2) O(1)

mergesort O(n log n) O(n log n) O(nlog n) O(n)

heapsort O(n log n) O(n log n) O(nlog n) O(1)

State-Space Search: Estimating the Remaining Cost

• As mentioned earlier, informed search algorithms associate a
priority with each successor state that is generated.

• The priority is based in some way on the remaining cost –
i.e., the cost of getting from the state to the closest goal state.

• for the 8 puzzle, remaining cost = # of steps to closest goal

• For most problems, we can’t determine the exact remaining cost.

• if we could, we wouldn’t need to search!

• Instead, we estimate the remaining cost using a heuristic function
h(x) that takes a state x and computes a cost estimate for it.

• heuristic = rule of thumb

• To find optimal solutions, we need an admissable heuristic –
one that never overestimates the remaining cost.

Heuristic Function for the Eight Puzzle

• Manhattan distance = horizontal distance + vertical distance

• example: For the board at right, the
Manhattan distance of the 3 tile
from its position in the goal state

= 1 column + 1 row = 2

• Use h(x) = sum of the Manhattan distances of the tiles in x
from their positions in the goal state
• for our example:

h(x) = 1 + 1 + 2 + 2
+ 1 + 0 + 1 + 1 = 9

• This heuristic is admissible because each of the operators
(move blank up, move blank down, etc.) moves a single tile a
distance of 1, so it will take at least h(x) steps to reach the goal.

4 3 1
7 2

6 8 5

1 2
3 4 5

6 7 8

goal

4 3 1
7 2

6 8 5

1 unit away

1 unit away

1 unit away

2 units away
2 units away

0 units away
1 unit away

1 unit away

Greedy Search

• Priority of state x, p(x) = -1 * h(x)
• mult. by -1 so states closer to the goal have higher priorities

• Greedy search would consider the highlighted successor before
the other successors, because it has the highest priority.

• Greedy search is:
• incomplete: it may not find a solution

• it could end up going down an infinite path

• not optimal: the solution it finds may not have the lowest cost
• it fails to consider the cost of getting to the current state

3 1 2
4 5

6 7 8

3 1 2
4 7 5
6 8

3 2
4 1 5
6 7 8

3 1 2
4 5

6 7 8

3 1 2
4 5
6 7 8

 its successors

 initial state

h = 3
p = -3

h = 3
p = -3

h = 1
p = -1

h = 3
p = -3

 heuristic values and
priorities

A* Search

• Priority of state x, p(x) = -1 * (h(x) + g(x))
where g(x) = the cost of getting from the initial state to x

• Incorporating g(x) allows A* to find an optimal solution –
one with the minimal total cost.

3 1 2
4 5

6 7 8

3 1 2
4 7 5
6 8

3 2
4 1 5
6 7 8

3 1 2
4 5

6 7 8

3 1 2
4 5
6 7 8

h = 3
p = -(3 + 1)

h = 3
p = -(3 + 1)

h = 1
p = -(1 + 1)

h = 3
p = -(3 + 1)

3 2
4 1 5
6 7 8

3 2
4 1 5
6 7 8

h = 4
p = -(4 + 2)

h = 4
p = -(4 + 2)

Characteristics of A*

• It is complete and optimal.
• provided that h(x) is admissable, and that g(x) increases or stays

the same as the depth increases

• Time and space complexity are still typically exponential in the
solution depth, d – i.e., the complexity is O(bd) for some value b.

• However, A* typically visits far fewer states than other optimal
state-space search algorithms.

• Memory usage can be a problem, but it’s possible to address it.

solution
depth

iterative
deepening

A* w/ Manhattan
dist. heuristic

4 112 12

8 6384 25

12 364404 73

16 did not complete 211

20 did not complete 676

Source: Russell & Norvig,
Artificial Intelligence: A Modern
Approach, Chap. 4.

The numbers shown are the
average number of search
nodes visited in 100 randomly
generated problems for each
solution depth.

The searches do not appear to
have excluded previously seen
states.

Implementing Informed Search (~cscie119/examples/search)

• Add new subclasses of the abstract Searcher class.

• For example:
public class GreedySearcher extends Searcher {

private Heap nodePQueue;

public void addNode(SearchNode node) {
nodePQueue.insert(

new HeapItem(node, -1 * node.getCostToGoal()));
}
…

