programming transformations

- what are convenient coordinate systems to work with
 - how do describe where the objects are relative to each other
 - how to get everything ready for the camera
- how to deal with this in an openGL program

world frame

- (rhon) world frame \(\vec{w}^f \)
- never changes
- coordinates of a point wrt this frame are called world coordinates.

\[
\begin{bmatrix}
x_w \\
y_w \\
z_w \\
1
\end{bmatrix}
\]

object frame

- we wish to describe the geometry of an object without thinking about its placement in the world.
- we associate a rhon frame with the object \(\vec{o}^i \)
- we describe our geometry using coordinates wrt \(\vec{o}^i \).
 - called object coordinates

\[
\begin{bmatrix}
x_o \\
y_o \\
z_o \\
1
\end{bmatrix}
\]

- example: canonical cube

object and world relationship

- relationship between world and object is expressed as

\[
\vec{o}^i = \vec{w}^f O
\]

where \(O \) is a RB matrix.
- with the above understanding, in the computer program we store only \(O \)
- we can place and move the object by changing \(\vec{o}^i \).
 - we update \(\vec{o}^i \) by updating \(O \)
- in general we will have many objects, each with its own associated matrix
- in our code, we will store these matrices in \(g_{\text{objectRbt}[i]} \)

eye frame

- to create picture, we need a point of view.
- position of each object in picture is based on its relationship to eye
 - its coordinates relative to the eye's frame
- so we have an eye frame
• think of this frame as x=right arm, y=up, -z=forward
• eye coordinates:

\[
\begin{pmatrix}
x_e \\
y_e \\
z_e \\
1
\end{pmatrix}
\]

• relationship between world and eye is expressed as

\[\vec{\mathbf{e}}^i = \mathbf{w}^i E\]

where \(E\) is a RB matrix.
• any frame could act as the eye. in the code, we will have a special frame named \(g_{\text{skyRbt}}\) which will be the default eye.

to render
• a point can be expressed with object coords, world coords, and eye coords.

\[\vec{p} = \vec{\mathbf{e}}^i c = \mathbf{w}^i Oc = \vec{\mathbf{e}}^i E^{-1} Oc\]

• it makes sense for our renderer to use eye coordinates.
• computed as

\[
\begin{pmatrix}
x_e \\
y_e \\
z_e \\
1
\end{pmatrix} = E^{-1}O \begin{pmatrix}
x_o \\
y_o \\
z_o \\
1
\end{pmatrix}
\]

• in our code we will store object coords in the VBO, pass \(E^{-1}O\) to the vertex shader, as a uniform variable and do this multiplication in the vertex shader.

moving an object wrt a
• we move an object by transforming \(\vec{\mathbf{o}}^t\)
• Let us say we wish to apply some transformation \(M\), (say translate in first axis) to an object frame \(\vec{\mathbf{o}}^t\) with respect to some frame \(\vec{\mathbf{a}}^t = \mathbf{w}^tA\)

\[
\begin{align*}
\vec{\mathbf{a}}^t &= \vec{\mathbf{w}}^t O \\
&= \vec{\mathbf{a}}^t A^{-1} O \\
\Rightarrow \quad \vec{\mathbf{a}}^t MA^{-1} O &= \vec{\mathbf{w}}^t AMA^{-1} O
\end{align*}
\]

• this is implemented by updating a variable \(O\).
• in code : \(O \leftarrow AMA^{-1} O\).
 - we will do this as \(O = \text{doMtoOwrtA}(M, O, A)\).

non useful \(\vec{\mathbf{a}}^t\)
• suppose we use \(\vec{\mathbf{o}}^t\) as the auxiliary frame
• this of course simplifies to

\[
\begin{align*}
\vec{\mathbf{o}}^t &= \vec{\mathbf{w}}^t O \\
\Rightarrow \quad \vec{\mathbf{w}}^t OM
\end{align*}
\]
problem: directions don’t match what i see on the screen so hard to control (see demo)

• suppose we use \(\vec{e} \) as the auxiliary frame
• object orbits around the eye (see demo).

• suppose we use \(\vec{w} \) as the auxiliary frame
• this of course simplifies to

\[
\vec{o} = \vec{w}O \\
\Rightarrow \vec{w}MO
\]

• but now we have two problems

useful \(\vec{a} \)

• we want a new frame that has the origin of the object but directions of the eye.
 – see fig
• let us factor our matrices as

\[
O = (O)_{T}(O)_{R} \\
E = (E)_{T}(E)_{R}
\]

• desired auxiliary frame should be

\[
\vec{a} = \vec{w}O_{T}(E)_{R}
\]
 – read right to left
• so \(A = (O)_{T}(E)_{R} \).
• in the spec, if our object is a cube and the eye the “sky camera” we will call this auxiliary; frame “cube-sky”

useful \(\vec{a} \) for moving eye

• eye frame can be moved just like an object frame \(E \leftarrow AMA^{-1}E \).
• to get “intuitive” directions, we may need to negate some of the signs.
• to have eye orbit around object \(A = (O)_{T}(E)_{R} \).
• to have eye orbit around center of room \(A = (E)_{R} \).
 – in spec we call this world-sky
• to have egomotion, we can choose \(\vec{a} = \vec{e} \), giving us \(A = E \).
• there may be other useful ways to control the eye depending on the context.

later

• later on we will come back to scales and hierarchies.