hello world 3d: basic approach

- object (say a cube) will be made up of triangles, each with three vertices, each with known object coordinates.
- object coordinates of vertices will be put in an OpenGL buffer object.
- C++ code will maintain object matrices \(\mathbf{g}_{\text{objectRbt}}[i] \) for each object \(i \) and sky matrix \(\mathbf{g}_{\text{skyRbt}} \) for a sky camera. (show).
- typically we will use the sky camera’s matrix as the eye’s matrix \(\mathbf{E}, \mathbf{eyeRbt} = \mathbf{g}_{\text{skyRbt}} \) but we can also use any other object as the eye.

interaction

- in the beginning we initialize the object and sky matrices.
- we will use mouse motion to update them
 - here very simply, but in your assignment with more sophistication.

drawing

- to draw an object, we will pass \(\mathbf{E}^{-1} \mathbf{O} \) as a uniform variable to the vertex shader.
- called a modelview matrix \(\mathbf{MVM}/u\text{ModelViewMatrix} \)
- vertex shader will transform the object coordinates into eye coordinates and pass these out as varying variables.
- to get “perspective effect” we will also create a special projection matrix \(\mathbf{P}, \text{projmat} \) and pass it to the vertex shader. (much more later)
- vertex shader will multiply eye coordinates by \(\mathbf{P} \) to get data to set \(\text{gl_Position} \).

for normals

- explicit normal data will also be placed by us in the openGL buffers.
- vertex shader will transform the object coordinates of the normal into eye coordinates of the normal and pass these out as varying variables
- these will be interpolated over a triangle and used by the fragment shader for material simulation.

flat vs smooth shading

- one can calculate a triangle’s normal from the vertex position data.
 - using a cross product
- to simulate the shading of a flat facet, we pass the face’s geometric normal at all three vertices of a triangle.
 - since the data agrees at the three vertices, the interpolated value at any interior pixel will agree with this value.
- but suppose we want to give the appearance of a smooth object,
- we can calculate and pass a normal which represents the “true” normal of some underling smooth surface
 - often just an average of the surrounding faces’ flat normals
- in this case, the normals do not agree at the vertices of a triangle.
- the normal data is interpolated as a varying variable and we get a smooth appearance
- see material demo

detour: transforming normals

- we use normals for shading
- how do they transform
• suppose i rotate forward
 – normal gets rotated forward
• suppose squash in the y direction
 – (normalized) normal gets higher in the y direction (see figure)
• what is the rule?

computing normals
• context: lets \(\tilde{f} \) be a RHON frame.
• a (non-unit) tangent is vector between two nearby points
• \(\tilde{\ell} = (\tilde{p}_1 - \tilde{p}_0) \)
• (non-unit) normal is orthogonal to any tangent
 \[\vec{n} \cdot \vec{\ell} = 0 \]
• in coordinates
 \[
 \begin{bmatrix}
 nx & ny & nz \\
 tx & ty & tz
 \end{bmatrix}
 \begin{bmatrix}
 l \\
 t \\
 1
 \end{bmatrix} = 0
 \]

transform
• let us apply a transform which acts on points as \(\tilde{\vec{c}} \Rightarrow \tilde{f}(A\vec{c}) \)
 – where
 \[A = \begin{bmatrix} l & t \\ 0 & 1 \end{bmatrix} \]
• \([tx', ty', tz']^t := l[tx, ty, tz]^t \) are the coordinates of the transformed tangent.
• so lets plug in \(l^{-1}l \)
 \[
 \begin{bmatrix}
 nx & ny & nz \\
 tx & ty & tz
 \end{bmatrix}
 l^{-1}l
 \begin{bmatrix}
 l \\
 t \\
 1
 \end{bmatrix} = 0
 \]
• define \([nx', ny', nz'] := [nx, ny, nz]^tl^{-1} \)
• \[
 \begin{bmatrix}
 nx' & ny' & nz' \\
 tx' & ty' & tz'
 \end{bmatrix}
 = 0
 \]
• so \([nx', ny', nz']^t \) must be the (non unit) normal of the transformed geometry
so
\[
\begin{bmatrix}
 nx' \\
 ny' \\
 nz'
\end{bmatrix}
= l^{-t}
\begin{bmatrix}
 nx \\
 ny \\
 nz
\end{bmatrix}
\]

inv transpose
• so inverse transpose/ transpose inverse is the rule
• for rotations, transpose = inverse.
• for scales, transpose = nothing.
• in the code we will send A and I^{-t} to the vertex shader.
• we will compute and pass the inv tpos MVM as a uniform variable \texttt{NMVM/uNormalMatrix}

vertex shader code

• does the matrix multiplies
• sets \texttt{gl_Position}.
• also outputs the eye coordinates of the vertex and the normal.
• note the \texttt{glsl vec3} and \texttt{vec4} casting.

fixed function

• finds screen pixels inside of triangle
• interpolates values for the varying variables.
• \texttt{vPosition} at each pixel corresponds to geometric position of the point in the triangle observed at the pixel (more later)

fragment shader code

• takes the position and normal information, as well the eye coordinates of the position of 2 light sources, as well as the underlying surface color
• does some math to simulate the observed color value (more later)
• output goes to screen and is properly z-buffered (more later)

cvec

• we give you a \texttt{Cvec2, Cvec3, and Cvec4} data type.
• entries can be accessed with \texttt{v[i]} or \texttt{v(i)}
• \texttt{cvecs} can be added, and scalar multiplied (only implemented with scalar on the rhs).
• we also give you \texttt{dot} and \texttt{cross} and \texttt{normalize}

Matrix4

• we will give you a \texttt{Matrix4} data type
• default constructor gives identity
• give creators such as \texttt{makeXRotation}, \texttt{makeTranslation}
• entries can be accessed as \texttt{M(i,j)}
• matrices can be multiplied together
• matrix can be multiplied by a \texttt{cvec4}
• we give code for \texttt{inv(M)}
 – only works on affine matrices.
• we give code for \texttt{transpose(M)}
• we give code for \texttt{normalMatrix(M)}
• we also give special code for \texttt{makeProjection}
• you will code \texttt{transFact(A)} and \texttt{linFact(A)} to implement $A = TL$
geometry data types
- in our code we use a `VertexPN` type to store the position and normal. (show)
- we will pass this data to OpenGL buffers
- a few differences from asst1.
- instead of using multiple VBOs for each attribute (position, normal), we pack them in a single VBO.
- we will use an indexed buffer object, IBO, to point to the vertex data making up the triangles.

IBOs
- IBOs allow for vertex sharing
- so 4 verts can be stored for a quad instead of 6
- we want to draw the cube using flat shading
- so at cube corners, the position of the vertices in the 3 faces are identical, but they have different normals
- so we will not share these.

gemetry object
- a `Geometry` object (show)
- created by passed an array of `VertexPNs` for the VBO and an array of unsigned shorts for the IBO
- during construction, these are placed in one VBO and IBO
- a `Geometry` object will be drawn by wiring the VBO to the appropriate attribute variables
 - this requires stride information due to the interleaving
- and wiring the IBO to the appropriate slot
- then we call `glDrawElements` (instead of `glDrawArrays`).
- see `initGround`
- we also give you functions that fills in cube and sphere geometry into an array. (show `initCubes`)

code specifics
- `initGLState`, now sets up some special stuff for z-buffer and “back face culling”
- our `ShaderState` struct now has a constructor which reads and loads the shaders, and grabs the handles.
- `initGeometry` initializes a ground geometry and a cube geometry. lets look.
- `drawStuff` sets up matrices and then draws geometry
 - note that we pass eye Coordinates of the light position, for use in the fragment shader.
- motion: in the starter code, we just we simply post multiply an M action to O.
 - not desired.

your code
- you will draw 2 cubes
- you will be able to use the sky-cam or either of the cubes as the eye
- when you are viewing from the sky-cam you can move either object or the sky cam.
- when moving an object, you will do this using wrt the cube-sky frame we discussed
- when moving the sky-cam, you will use roll free orbit, and roll free egomotion.
- this will require the factoring routines
- you will need to code `doMtoOwrtA`.
- for more details see spec