motivation

- for animation, we will want to interpolate between frames in a natural way.
- for now, we want to also improve our rotation interface
- we will study quaternions as alternative to rot mats

 \[
 R = \begin{bmatrix}
 r & 0 \\
 0 & 1
 \end{bmatrix}
 \]

- later we will add back in the translations.

recall this beast

- one can specify rotation about an axis represented by a unit norm 3-coordinate vector \(\hat{k} := [k_x, k_y, k_z]^T \) and a rotation angle \(\theta \) using the matrix

 \[
 \begin{bmatrix}
 k_x^2v + c & k_xk_yv - k_zs & k_xk_zv + k_y s & 0 \\
 k_yk_xv + k_zs & k_y^2v + c & k_yk_zv - k_x s & 0 \\
 k_zk_xv - k_y s & k_zk_yv + k_x s & k_z^2v + c & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

- where \(v \equiv 1 - c \)
- the (geometric) axis of rotation \(\hat{k} \) is determined by how the matrix is placed into an expression, using the “left of” rule

interpolation setup

- desired object frame for “time=0”: \(\vec{\omega}_0 = \vec{w}^T R_0 \)
- desired object frame for “time=1”: \(\vec{\omega}_1 = \vec{w}^T R_1 \)
- we wish to find a sequence of rhon frames \(\vec{\omega}_\alpha \), for \(\alpha \in [0..1] \), that naturally goes from \(\vec{\omega}_0 \) to \(\vec{\omega}_1 \).

bad ideas 1

- lin interp of matrices \(R_\alpha := (1 - \alpha)R_0 + (\alpha)R_1 \) and then set \(\vec{\omega}_\alpha = \vec{w}^T R_\alpha \).
- in the result, each basis vector simply moves along a straight line.
 - since \(R_\alpha \mathbf{e} = (1 - \alpha)R_0 \mathbf{e} + (\alpha)R_1 \mathbf{e} =: (1 - \alpha)\mathbf{c}_0 + (\alpha)\mathbf{c}_1 \)
- In this case, the intermediate \(R_\alpha \) are not rotation matrices
 - see fig

bad idea 2

- factor both \(R_0 \) and \(R_1 \) into 3, so-called, Euler angles
 - These three scalar values could each be linearly interpolated using \(\alpha \). and used to generate intermediate rotations
 - not natural,
 - not invariant to choice of world frame
 - this property is called left invariance
 - see figure
 - we need an intrinsic geometric operation (describable independent of coordinates or world frame)
 - note: for a 2 Euler dof camera, this is a reasonable solution.
lets back up

• given two frames, there must be a unique affine transformation \mathcal{Z} that maps \vec{o}'_0 to \vec{o}'_1.

 – here \mathcal{Z} is a map, not a matrix, (so no need to specify the wrt frame).
• since \vec{o}'_0 and \vec{o}'_1 are both rhon frames with the same origin, \mathcal{Z} must be a rotation.
• a rotation can always be described using a fixed axis \vec{k} and a rotation amount θ.

 – this is essentially unique
• let us define \mathcal{Z}^α to be a rotation about the same \vec{k}, but by $\alpha\theta$ degrees instead.
• applying \mathcal{Z}^α to \vec{o}'_0, with $\alpha \in [0..1]$, this gives us a natural interpolating sequence \vec{o}'_{α}.

 – this construction is left invariant, and essentially unique.

uniqueness and cycles

• actually, \mathcal{Z} can be thought of as a rotation of some $\theta + n2\pi$ degrees for any positive or negative integer n, around a fixed axis \vec{k}

 – not relevant for linear tform on vectors, but is relevant for interpolation
• the natural choice is to choose n such that $|\theta + n2\pi|$ is minimal.

 – this might be a negative amount.
• actually, \mathcal{Z} can also be thought of as a rotation of $-\theta - n2\pi$ degrees around $-\vec{k}$

 – but choosing the minimal rotation will get the same sequence of frames

using world frame

• lets work this out with our world frame + matrix representation
• the mapping $\vec{o}'_0 \Rightarrow \vec{o}'_1$ can be written as $\vec{w}'R_0 \Rightarrow \vec{w}'(R_1R_0^{-1})R_0$
• let us define $\mathcal{Z} := (R_1R_0^{-1})$
• so \mathcal{Z} must be the unique rotation matrix, such that “doing \mathcal{Z} wrt \vec{w}'” exactly expresses \mathcal{Z}.
• the \mathcal{Z} matrix is based on a coordinate axis \hat{k}.
• suppose we could compute a “power” operator \mathcal{Z}^α that represents a scaled rotation about \hat{k}.
• then as α goes from $0..1$, the sequence $\vec{w}'Z^\alpha R_0$, goes from \vec{o}'_0 to \vec{o}'_1 by rotating \vec{o}'_0 more and more about a single axis

 – this exactly implements what we were looking for

hard part

• hard part: factor $R_1R_0^{-1}$, into its axis/angle form.
• main quat idea: is to keep track of the axis and angle at all times but in a way that allows our manipulations
• this will allow us to do this interpolation
• it also could help in general with avoiding numerical drift away from RBTs.
• it will also make an arcball interface very easy.

the representation

• a quaternion is 4 tuple with operations
written
\[
\begin{bmatrix}
w \\
c
\end{bmatrix}
\]

where \(w \) is a scalar and \(c \) is a coordinate 3-vector.

- suppose an axis \(\vec{k} \) is represented by a unit length coordinate 3-vector \(\hat{k} \)
- a rotation of \(\theta \) degrees about \(\hat{k} \), is represented as
 \[
 \begin{bmatrix}
 \cos\left(\frac{\theta}{2}\right) \\
 \sin\left(\frac{\theta}{2}\right)\hat{k}
 \end{bmatrix}
 \]

- oddity: the division by 2 will be needed to make the operations work out as needed.

antipodes

- Note that a rotation of \(-\theta\) degrees about the axis \(-\hat{k}\) gives us the same quaternion.
- A rotation of \(\theta + 4\pi\) degrees about an axis \(\hat{k}\) also gives us the same quaternion.
- a rotation of \(\theta + 2\pi\) degrees about an axis \(\hat{k}\), which in fact is the same linear transformation, gives us the negated quaternion
- so antipodal quaternions represent the same rotation transformation
 - but heads up regarding cycles and power

examples

- \(\theta = 0 \):
 \[
 \begin{bmatrix}
 1 \\
 \hat{0}
 \end{bmatrix}
 \]

- \(\theta = 2\pi \):
 \[
 \begin{bmatrix}
 -1 \\
 \hat{0}
 \end{bmatrix}
 \]

- both represent the identity rotation
- \(\theta = \pi \)
 \[
 \begin{bmatrix}
 0 \\
 \hat{k}
 \end{bmatrix}
 \]

- \(\theta = -\pi \)
 \[
 \begin{bmatrix}
 0 \\
 -\hat{k}
 \end{bmatrix}
 \]

- both represent the same flip rotation.

unit norm quats == rotations

- squared norm is sum of 4 squares.
- Any quaternion of the form
 \[
 \begin{bmatrix}
 \cos\left(\frac{\theta}{2}\right) \\
 \sin\left(\frac{\theta}{2}\right)\hat{k}
 \end{bmatrix}
 \]

has a unit norm
Conversely, as we will see next any unit norm quaternion can be interpreted as above with a \hat{k} and θ

- this construction also implicitly shows that the interpretation is unique up to additions of 4π, as well as negation of \hat{k} and θ.

Extract

- lets see how to do this factoring on a unit quaternion

\[
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

- recall that $||\beta\hat{k}|| = \beta||\hat{k}||$.
- set β to be the norm of $[x, y, z]^t$.
- extract the unit axis \hat{k} by normalizing $[x, y, z]^t$.
- this gives us a positive β and a \hat{k} so that

\[
\begin{bmatrix}
w \\
\beta \hat{k}
\end{bmatrix} =
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

- with $w^2 + \beta^2 = 1$ (on unit circle).
- β^2 is the sum of squares of $[x, y, z]$.

angle

- we use both the sin and cos. (using only one of them would leave us with 2 solutions).
- Next, extract θ using the *atan2* function in C++.
- $\text{atan}(\beta, w)$ returns a unique $\phi \in [-\pi..\pi]$ such that $\sin(\phi) = \beta$ and $\cos(\phi) = w$.
- this gives us ϕ and \hat{k} so that

\[
\begin{bmatrix}
\cos(\phi) \\
\sin(\phi) \hat{k}
\end{bmatrix} =
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

angle II

- so we get a unique value $\theta/2 \in [-\pi..\pi]$, and thus a unique $\theta \in [-2\pi..2\pi]$.
- this gives us θ and \hat{k} such that

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k}
\end{bmatrix} =
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

- so we are done.

power

- define

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k}
\end{bmatrix}^\alpha =
\begin{bmatrix}
\cos(\frac{\alpha\theta}{2}) \\
\sin(\frac{\alpha\theta}{2}) \hat{k}
\end{bmatrix}
\]

4
• where θ and \hat{k} were extracted uniquely, as above.
 – where $\theta \in [-2\pi..2\pi]$
• As α goes from 0 to 1, we get a series of rotations with angles going between 0 and θ.

short quaternion

• given a quaternion on which we want to power: $
\begin{bmatrix}
\cos\left(\frac{\theta}{2}\right) \\
\sin\left(\frac{\theta}{2}\right)\hat{k}
\end{bmatrix}$
• suppose $\cos\left(\frac{\theta}{2}\right) > 0$
• this means $\theta/2 \in [-\pi/2..\pi/2]$
 – and thus $\theta \in [-\pi..\pi]$.
• so when we interpolate, we will get a sequence that spans less than 180. good.

long quaternion

• but suppose $\cos\left(\frac{\theta}{2}\right) < 0$,
• this means $|\theta/2| \in [\pi/2..\pi]$
 – and thus $|\theta| \in [\pi..2\pi]$.
 – so $\alpha \theta$ would go more than 180 degrees which we are not going to want during interpolation
• in this case suppose we can simply negate the quaternion, giving us a short quaternion.
• so when we interpolate, before calling the power operator, we should first check the sign of the first coordinate,
 and conditionally negate the quaternion.
• we call this the conditional negation operator cn.

Operations

• magic trick number 1.
• quat * quat multiply

\[
\begin{bmatrix}
w_1 \\
c_1
\end{bmatrix}
\begin{bmatrix}
w_2 \\
c_2
\end{bmatrix} =
\begin{bmatrix}
(w_1w_2 - c_1 \cdot c_2) \\
(w_1c_2 + w_2c_1 + c_1 \times c_2)
\end{bmatrix}
\]
• where \cdot and \times are the dot and cross product on 3 dimensional coordinate vectors.
• correctly models rot matrix * rot matrix multiplication!
• unit quat multiplicative inverse

\[
\begin{bmatrix}
\cos\left(\frac{\theta}{2}\right) \\
\sin\left(\frac{\theta}{2}\right)\hat{k}
\end{bmatrix}^{-1} =
\begin{bmatrix}
\cos\left(\frac{\theta}{2}\right) \\
-\sin\left(\frac{\theta}{2}\right)\hat{k}
\end{bmatrix}
\]
• easy to verify

to interpolate

• if we want to interpolate between \vec{w}^tR_0 and \vec{w}^tR_1
• and suppose that R_0 and R_1 are modeled as q_0 and q_1.
• recall the desired interpolation frames in matrix form is $\vec{w}^t(R_1R_0^{-1})^\alpha R_0$
• so we calculate $(cn(q_1q_0^{-1}))^\alpha q_0$
• this is called slerping (see book for more).
quat vector multiply setup

- magic trick number 2
- start with arbitrary 3-coordinate vector \(\mathbf{c} \), representing a a vector.
- left multiply it by a 3 by 3 rotation matrix \(\mathbf{r} \), to get
 \[
 \mathbf{c}' = \mathbf{r}\mathbf{c}
 \]

quat vector multiply setup

- let \(\mathbf{r} \) be represented with the unit norm quaternion \(\mathbf{q} \)
- use \(\textcvec{3} \mathbf{c} \) to create the non unit norm quaternion
 \[
 \begin{bmatrix}
 0 \\
 \mathbf{c}
 \end{bmatrix}
 \]
- perform the following triple quaternion multiplication:
 \[
 \mathbf{q} \begin{bmatrix}
 0 \\
 \mathbf{c}
 \end{bmatrix} \mathbf{q}^{-1}
 \]
- tada: result is of form
 \[
 \begin{bmatrix}
 0 \\
 \mathbf{c}'
 \end{bmatrix}
 \]
- and we might write this \(\mathbf{q}\mathbf{c} = \mathbf{c}' \)
- in our \texttt{Quat} class, we will give you: \texttt{quat * cvec3 = cvec3}

Rbt data structure

- lets now build a data structure to represent an rbt
- recall
 \[
 \begin{bmatrix}
 \mathbf{r} & \mathbf{t} \\
 0 & 1
 \end{bmatrix} = \begin{bmatrix}
 \mathbf{i} & \mathbf{t} \\
 0 & 1
 \end{bmatrix} \begin{bmatrix}
 \mathbf{r} & 0 \\
 0 & 1
 \end{bmatrix}
 \]
- we can encode this information in the following data type

  ```
  class RigTForm{
    Cvec3 t;
    Quat q;
  };
  ```
- this data will be always interpreted in the \(\mathbf{TR} \) order above.

\texttt{rbt * Cvec4}

- you will write code for the product of a \texttt{RigTForm} \(\mathbf{A} \) and a \texttt{Cvec4} \(\mathbf{c} \), (where the last entry is 0/1).
- only translate if the fourth coordinate is 1.
- copy over the fourth coordinate from input to output.

\texttt{rbt * rbt}
• let us look at the product of two such rigid body transforms.

\[
\begin{bmatrix}
 i & t_1 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_1 & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 i & t_2 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_2 & 0 \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & t_1 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_2 & 0 \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & t_1 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 i & r_{1t_2} \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_1 & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_2 & 0 \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & t_1 + r_{1t_2} \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_{1r_2} & 0 \\
 0 & 1 \\
\end{bmatrix}
\]

• the result is a new rigid transform with translation $t_1 + r_{1t_2}$ and rotation r_1r_2.

 – use this to code up the $*$ op.

inv operator

• likewise for inverse

\[
\left(\begin{bmatrix}
 i & t \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r & 0 \\
 0 & 1 \\
\end{bmatrix}\right)^{-1} = \\
\begin{bmatrix}
 r & 0 \\
 0 & 1 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
 i & t \\
 0 & 1 \\
\end{bmatrix}^{-1} = \\
\begin{bmatrix}
 r^{-1} & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 i & -t \\
 0 & 1 \\
\end{bmatrix} = \\
\begin{bmatrix}
 r^{-1} & -(r^{-1}t) \\
 0 & 1 \\
\end{bmatrix} = \\
\begin{bmatrix}
 i & -(r^{-1}t) \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r^{-1} & 0 \\
 0 & 1 \\
\end{bmatrix}
\]

• the result is a new rigid body transform with translation $-(r^{-1}t)$ and rotation r^{-1}.

code

• change `skyRbt` and `objectRbt[]` to be `RigTform` data type instead of `Matrix4`.

• in fact almost all of the C++ Matrix4's will get replaced!

• we provide `RigTForm makeXRotation(const double ang)`

more code

• in GLSL, you will still use its matrix data type.

• the only Matrix4s that will survive in your c++ code are the projMatrix, the MVM and the NMVM, which get sent to your shaders.

• also, when we need to do object scaling, we cannot capture this in an RigTform, so this will also be a Matrix4 used in creating the MVM.

• to communicate with the vertex shader using 4 by 4 matrices, we provide a procedure `Matrix4 quatToMatrix(quat q)` which turns quat into a 4 by 4 rotation matrix.

• Then, the matrix for a rigid body transform can be computed as

```c++
matrix4 rigTFormToMatrix(const RigTform& rbt){
    matrix4 T = makeTranslation(rbt.getTranslation());
    matrix4 R = quatToMatrix(rbt.getRotation());
    return T * R;
}
```
• Thus, our drawing code starts with

```cpp
Matrix4 MVM = rigTFormToMatrix(inv(eyeRbt) * objRbt);
// can right multiply scales here
Matrix4 NMVM = normalMatrix(MVM);
sendModelViewNormalMatrix(curSS, MVM, NMVM);
```

• we will not need any code that takes a `Matrix4` and converts it to a `Quat`.

• scale will still represented by a `Matrix4`. (more later)

rbT Interpolation

• let's get back to discussing interpolation.

• given two frames, \(\vec{o}_0 = \vec{w}_t O_0 \) \(\vec{o}_1 = \vec{w}_t O_1 \)

 we will write it as matrices \(O_0 = (O_0)_T (O_0)_R \) and \(O_1 = (O_1)_T (O_1)_R \), but implement it using two `RigTForm` variables.

• interpolate between them by: linearly interpolating the two translation to get: \(T_\alpha \),

• slerp between the rotation quaternions to obtain the rotation \(R_\alpha \),

• set the interpolated RBT \(O_\alpha \) to be \(T_\alpha R_\alpha \).

• set \(\vec{o}_\alpha = \vec{w}_t O_\alpha \).

behavior

• origin of the frame travels in a straight line with constant velocity,

 - read right to left

• the vector basis of the frame rotates with constant angular velocity about a fixed axis.

• physically natural if origin is at center of mass.

• has intrinsic description, so it is left invariant

• note: origin plays special role. if use different object frames for same geometry, we get different interpolation

 - not right invariant (see fig)