Visibility

- in the real world, opaque objects block light.
- we need to model this computationally
- one idea is to render back to front and use overwriting
 - this will have problem with visibility cycles
- we could explicitly store everything hit along a ray and then compute the closest
 - makes sense in a ray tracing setting, where we are working one pixel/ray at time, but not for OpenGL, where we are working one triangle at a time.

z-buffer

- we will use use z-buffer
- triangles are drawn in any order
- each pixel in framebuffer stores “depth” value of closest geometry observed so far
- When a new triangle tries to set the color of a pixel, we first compare its depth to the value stored in the z-buffer. Only if the observed point in this triangle is closer do we overwrite the color and depth values of this pixel.
- this is done per-pixel, so no cycle problems.
- there are a optimizations where z-testing is done before the fragment shading is done

Other Uses of Visibility Calculations

- visibility to a light source is useful for shadows
 - we will talk about shadow mapping later
 - we will also discuss shadow calculations in a ray tracer
- Visibility computation can also be used to speed up the rendering process.
 - If we know that some object is occluded from the camera, then we don’t have to render the object in the first place.
 - can use a conservative test

Basic Mathematical Model

- for every point we define its \([x_n, y_n, z_n]^T\) coordinates using the following matrix expression.

\[
\begin{bmatrix}
 x_n \\
 y_n \\
 z_n \\
 w_n
\end{bmatrix} =
\begin{bmatrix}
 x_e \\
 y_e \\
 z_e \\
 w_e
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & -c_x & 0 \\
 0 & s_y & -c_y & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_c \\
 y_c \\
 z_c \\
 1
\end{bmatrix}
\]

(1)

- we now also have the value \(z_n = \frac{1}{z_e}\).
- Our plan is to use this \(z_n\) value to do depth comparisons in our z-buffer.

correct ordering

- Given two points \(\tilde{p}^1\) and \(\tilde{p}^2\) with eye coordinates \([x_1^e, y_1^e, z_1^e]^T\) and \([x_2^e, y_2^e, z_2^e]^T\).
- Suppose that they both are in front of the eye, i.e., \(z_1^e < 0\) and \(z_2^e < 0\).
- And suppose that \(\tilde{p}^1\) is closer to the eye than \(\tilde{p}^2\), that is \(z_1^e < z_2^e\).
- Then \(-\frac{1}{z_1^e} > -\frac{1}{z_2^e}\), meaning \(z_n^1 > z_n^2\).

projective transform
• we can now think of the process of taking points given by eye coordinates to points given by normalized device coordinates as an honest to goodness 3D geometric transformation.
• This kind of transformation is generally neither linear nor affine, but is something called a 3D *projective transformation*.
• projective transformations preserve co-linearity and co-planarity of points

projective figure

• first map film plane
 - iso-\(z_e \) so iso \(z_n \)
• map the red segment
 - some straight segment
• then note that rays must hit same pixel, with same \((x_n, y_n)\), so map to parallel lines

\(z_n \) lin interp is right

• coplanarity: for points on a fixed triangle, we will have \(z_e = ax_e + by_e + c \), for some fixed \(a, b \) and \(c \).
• preservation of coplanarity: for points on a fixed triangle, we will have \(z_n = ax_n + by_n + c \), for some fixed (but different) \(a, b \) and \(c \).
• Thus, the correct \(z_n \) value for a point can be computed using linear interpolation over the 2D image domain as long as we know its value at the three vertices of the triangle
• (see fig): projective transforms are funny
• linear interpolation of \(z_e \) values over the screen would produce wrong answer.
• “red” should win for entire bottom half of image.
• \(z_e \neq ax_n + by_n + c \),
• suppose i really wanted to have \(z_e \) at each fragment, how could i get it?... more later.

Numerics

• there can be numerical difficulties when computing \(z_n \). As \(z_e \) goes towards zero, the \(z_n \) value diverges off towards (positive) infinity.
• Conversely, points very far from the eye have \(z_n \) values very close to zero. The \(z_n \) of two such far away points may be indistinguishable in a finite precision representation, and thus the z-buffer will be ineffective in distinguishing which is closer to the eye.

solution: near/far

• solution: replacing the third row of the matrix with the more general row \([0, 0, \alpha, \beta]\).
• it is easy to verify that if the values \(\alpha \) and \(\beta \) are both positive, then the z-ordering of points (assuming they all have negative \(z_e \) values) is preserved under the projective transform.
• To set \(\alpha \) and \(\beta \), we first select depth values \(n \) and \(f \) called the *near* and *far* values (both negative), such that our main region of interest in the scene is sandwiched between \(z_e = n \) and \(z_e = f \).
• Given these selections, we set \(\alpha = \frac{f + n}{f - n} \) and \(\beta = \frac{-2fn}{f - n} \).
• We can verify now that any point with \(z_e = f \) maps to a point with \(z_n = -1 \) and that a point with \(z_e = n \) maps to a point with \(z_n = 1 \).
• Any geometry not in this [near..far] range is clipped away by OpenGL and ignored
• see fig

Code
In OpenGL, use of the z-buffer is turned on with a call to `glEnable(GL_DEPTH_TEST)`.

We also need a call to `glDepthFunc(GL_GREATER)`, since we are using a right handed coordinate system where “closer to the eye” equals less-negative equals greater.

In real life, you may see other conventions (for how to interpret n and f, some of the signs of the matrix, and the handedness of the ultimate z-test).