motivation

• for animation, we will want to interpolate between frames in a natural way.
• for now, we want to also improve our rotation interface
• we will study quaternions as alternative to rot mats

$$R = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$$

• later we will add back in the translations.

recall this beast

• one can specify rotation about an axis represented by a unit norm 3-coordinate vector \(\hat{k} := [k_x, k_y, k_z]^T \) and a rotation angle \(\theta \) using the matrix

$$\begin{bmatrix} k_x^2v + c & k_xk_yv - k_zs & k_xk_zv + k_yr & 0 \\ k_yk_xv + k_zs & k_y^2v + c & k_yk_zv - k_xr & 0 \\ k_zk_xv - k_yr & k_zk_yv + k_xr & k_z^2v + c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• where \(v \equiv 1 - c \)
• the (geometric) axis of rotation \(\hat{k} \) is determined by how the matrix is placed into an expression, using the “left of” rule

interpolation setup

• desired object frame for “time=0”: \(\vec{o}_0 = \vec{w}^TR_0 \)
• desired object frame for “time=1”: \(\vec{o}_1 = \vec{w}^TR_1 \),
• we wish to find a sequence of rhon frames \(\vec{o}_\alpha \), for \(\alpha \in [0..1] \), that naturally goes from \(\vec{o}_0 \) to \(\vec{o}_1 \).

bad ideas 1

• lin interp of matrices \(R_\alpha := (1 - \alpha)R_0 + (\alpha)R_1 \) and then set \(\vec{o}_\alpha = \vec{w}^TR_\alpha \).
• in the result, each basis vector simply moves along a straight line.
 - since \(R_\alpha \vec{e} = (1 - \alpha)R_0 \vec{e} + (\alpha)R_1 \vec{e} =: (1 - \alpha)\vec{c}_0 + (\alpha)\vec{c}_1 \)
• In this case, the intermediate \(R_\alpha \) are not rotation matrices
• see fig

bad idea 2

• factor both \(R_0 \) and \(R_1 \) into 3, so-called, Euler angles
• These three scalar values could each be linearly interpolated using \(\alpha \). and used to generate intermediate rotations
• not natural,
• not invariant to choice of world frame
• this property is called left invariance
• see figure
• we need an intrinsic geometric operation (describable independent of coordinates or world frame)
• note: for a 2 Euler dof (roll free) camera, this is a reasonable solution.
lets back up

- given two frames, there must be a unique affine transformation Z that maps \mathbf{o}_0^t to \mathbf{o}_1^t.
 - here Z is a map, not a matrix, (so no need to specify the wrt frame).
- since \mathbf{o}_0^0 and \mathbf{o}_1^1 are both rhon frames with the same origin, Z must be a rotation.
- a rotation can always be described using a fixed axis \mathbf{k} and a rotation amount θ.
 - this is essentially unique
- let us define Z^α to be a rotation about the same \mathbf{k}, but by $\alpha \theta$ degrees instead.
- applying Z^α to \mathbf{o}_0^0, with $\alpha \in [0..1]$. this gives us a natural interpolating sequence \mathbf{o}_α^t.
 - this construction is left invariant, and essentially unique.

uniqueness and cycles

- 1) a rotation of $-\theta$ degrees around $-\mathbf{k}$ will give us the same Z and the same interpolation.
- 2) Z can be thought of as a rotation of some $\theta + n2\pi$ degrees for any positive or negative integer n, around a fixed axis \mathbf{k}.
 - not relevant for linear tform on vectors, but is relevant for interpolation
- the natural choice is fix \mathbf{k} (including its sign) and then choose n such that $|\theta + n2\pi|$ is minimal.
 - this might be a negative amount.

using world frame

- let us work this out with our world frame + matrix representation
- the mapping $\mathbf{o}_0^0 \Rightarrow \mathbf{o}_1^1$ can be written as $\mathbf{w}^t R_0 \Rightarrow \mathbf{w}^t (R_1 R_0^{-1}) R_0$
- let us define the matrix $Z := (R_1 R_0^{-1})$
 - so Z must be the unique rotation matrix, such that “doing Z wrt \mathbf{w}” exactly expresses Z.
- the Z matrix is based on a coordinate axis \mathbf{k}.
- suppose we could compute a “power” operator Z^α that represents a scaled rotation about \mathbf{k}.
- then as α goes from 0..1, the sequence $\mathbf{w}^t Z^\alpha R_0$, goes from \mathbf{o}_0^0 to \mathbf{o}_1^1 by rotating \mathbf{o}_0^0 more and more about a single axis.
 - this exactly implements what we were looking for

hard part

- hard part: factor $R_1 R_0^{-1}$, into its axis/angle form.
 - main quat idea: is to keep track of the axis and angle at all times but in a way that allows our manipulations
 - this will allow us to do this interpolation
- it also could help in general with avoiding numerical drift away from RBTs.
 - it will also make an arcball interface very easy.

the representation

- a quaternion is 4 tuple with operations
• written

\[
\begin{bmatrix}
 w \\
 c
\end{bmatrix}
\]

where \(w \) is a scalar and \(c \) is a coordinate 3-vector.

• suppose an axis \(\vec{k} \) is represented by a unit length coordinate 3-vector \(\hat{k} \)

• a rotation of \(\theta \) degrees about \(\hat{k} \), is represented as

\[
\begin{bmatrix}
 \cos(\frac{\theta}{2}) \\
 \sin(\frac{\theta}{2})\hat{k}
\end{bmatrix}
\]

• oddity: the division by 2 will be needed to make the operations work out as needed.

antipodes

• Note that a rotation of \(-\theta\) degrees about the axis \(-\hat{k}\) gives us the same quaternion. fine.

• A rotation of \(\theta + 4\pi\) degrees about an axis \(\hat{k}\) also gives us the same quaternion. fine.

• a rotation of \(\theta + 2\pi\) degrees about an axis \(\hat{k}\), which in fact is the same linear transformaton, gives us the negated quaternion

• so antipodal quaternions represent the same rotation transformation
 – we can think of one being a short \(0 \leq |\theta| \leq \pi\) rotation, and the other being a long \(\pi \leq |\theta| \leq 2\pi\) rotation.
 – we will come back to this soon.

examples

• \(\theta = 0 \):

\[
\begin{bmatrix}
 1 \\
 0
\end{bmatrix}
\]

• \(\theta = 2\pi \):

\[
\begin{bmatrix}
 -1 \\
 0
\end{bmatrix}
\]

• both represent the identity rotation

• \(\theta = \pi \)

\[
\begin{bmatrix}
 0 \\
 \hat{k}
\end{bmatrix}
\]

• \(\theta = -\pi \)

\[
\begin{bmatrix}
 0 \\
 -\hat{k}
\end{bmatrix}
\]

• both represent the same flip rotation.

unit norm quats == rotations

• squared norm is sum of 4 squares.

• Any quaternion of the form

\[
\begin{bmatrix}
 \cos(\frac{\theta}{2}) \\
 \sin(\frac{\theta}{2})\hat{k}
\end{bmatrix}
\]

has a unit norm
Conversely, as we will see next any unit norm quaternion can be interpreted as above with a \hat{k} and θ

- this construction also implicitly shows that the interpretation is unique up to additions of 4π, as well as negation of \hat{k} and θ.

Extract

- let's see how to do this factoring on a unit quaternion

\[
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

- recall that $||\beta\hat{k}|| = \beta||\hat{k}||$.

- set β to be the norm of $[x, y, z]^t$.

- extract the unit axis \hat{k} by normalizing $[x, y, z]^t$.

- this gives us a positive β and a \hat{k} so that

\[
\begin{bmatrix}
w \\
\beta \hat{k}
\end{bmatrix} = \begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

- with $w^2 + \beta^2 = 1$ (on unit circle).

- β^2 is the sum of squares of $[x, y, z]$.

Angle

- we use both the sin and cos. (using only one of them would leave us with 2 solutions).

- Next, extract θ using the atan2 function in C++.

- $\text{atan}(\beta, w)$ returns a unique $\phi \in [-\pi..\pi]$ such that $\sin(\phi) = \beta$ and $\cos(\phi) = w$.

- this gives us ϕ and \hat{k} so that

\[
\begin{bmatrix}
\cos(\phi) \\
\sin(\phi) \hat{k}
\end{bmatrix} = \begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

Angle II

- so we get a unique value $\theta/2 \in [-\pi..\pi]$, and thus a unique $\theta \in [-2\pi..2\pi]$.

- this gives us θ and \hat{k} such that

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k}
\end{bmatrix} = \begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix}
\]

- so we are done.

Power

- define

\[
\begin{bmatrix}
\cos(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) \hat{k}
\end{bmatrix}^\alpha = \begin{bmatrix}
\cos(\frac{\alpha\theta}{2}) \\
\sin(\frac{\alpha\theta}{2}) \hat{k}
\end{bmatrix}
\]
• where \(\theta \) and \(\hat{k} \) were extracted uniquely, as above.

 - where \(\theta \in [-2\pi..2\pi] \)

• As \(\alpha \) goes from from 0 to 1, we get a series of rotations with angles going between 0 and \(\theta \).

short quaternion

• given a quaternion on which we want to power:

 \[
 \begin{bmatrix}
 \cos\left(\frac{\theta}{2}\right) \\
 \sin\left(\frac{\theta}{2}\right) \hat{k}
 \end{bmatrix}
 \]

• suppose \(\cos\left(\frac{\theta}{2}\right) > 0 \)

• this means \(\theta/2 \in [-\pi/2..\pi/2] \)

 - and thus \(\theta \in [-\pi..\pi] \).

• so when we interpolate, we will get a sequence that spans less than 180. good.

long quaternion

• but suppose \(\cos\left(\frac{\theta}{2}\right) < 0 \),

• this means \(|\theta/2| \in [\pi/2..\pi] \)

 - and thus \(|\theta| \in [\pi..2\pi] \).

 - so \(\alpha\theta \) would go more than 180 degrees which we are not going to want during interpolation

• in this case suppose we can simply negate the quaternion, giving us a short quaternion.

• so when we interpolate, before calling the power operator, we should first check the sign of the first coordinate, and conditionally negate the quaternion.

• we call this the conditional negation operator \(\text{cn} \).

Operations

• magic trick number 1.

•quat * quat multiply

\[
\begin{bmatrix}
 w_1 \\
 c_1
\end{bmatrix}
\begin{bmatrix}
 w_2 \\
 c_2
\end{bmatrix}
=
\begin{bmatrix}
 (w_1 w_2 - \mathbf{c}_1 \cdot \mathbf{c}_2) \\
 (w_1 \mathbf{c}_2 + w_2 \mathbf{c}_1 + \mathbf{c}_1 \times \mathbf{c}_2)
\end{bmatrix}
\]

where \(\cdot \) and \(\times \) are the dot and cross product on 3 dimensional coordinate vectors.

• correctly models rot matrix * rot matrix multiplication!

• unit quat multiplicative inverse

\[
\begin{bmatrix}
 \cos\left(\frac{\theta}{2}\right) \\
 \sin\left(\frac{\theta}{2}\right) \hat{k}
\end{bmatrix}^{-1}
=
\begin{bmatrix}
 \cos\left(\frac{\theta}{2}\right) \\
 -\sin\left(\frac{\theta}{2}\right) \hat{k}
\end{bmatrix}
\]

• easy to verify

to interpolate

• if we want to interpolate between \(\bar{\mathbf{w}}^i R_0 \) and \(\bar{\mathbf{w}}^i R_1 \)

• and suppose that \(R_0 \) and \(R_1 \) are modeled as \(q_0 \) and \(q_1 \).

• recall the desired interpolation frames in matrix form is \(\bar{\mathbf{w}}^i (R_1 R_0^{-1})^\alpha R_0 \)

• so we calculate \(\text{cn}(q_1 q_0^{-1}))^\alpha q_0 \)

• this is called slerping (see book for more).
quat vector multiply setup

- magic trick number 2
- start with arbitrary 3-coordinate vector \(c \), representing a a vector.
- left multiply it by a 3 by 3 rotation matrix \(r \), to get

\[
c' = rc
\]

quat vector multiply setup

- let \(r \) be represented with the unit norm quaternion \(q \)
- use cvec3 \(c \) to create the non unit norm quaternion

\[
\begin{bmatrix}
0 \\
c
\end{bmatrix}
\]
- perform the following triple quaternion multiplication:

\[
q \begin{bmatrix}
0 \\
c
\end{bmatrix} q^{-1}
\]
- tada: result is of form

\[
\begin{bmatrix}
0 \\
c'
\end{bmatrix}
\]
- and we might write this \(qc = c' \)
- in our Quat class, we will give you: \(\text{quat} * \text{cvec3} = \text{cvec3} \)

Rbt data structure

- lets now build a data structure to represent an rbt
- recall

\[
A = TR
\begin{bmatrix}
r & t \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
i & t \\
0 & 1
\end{bmatrix} \begin{bmatrix}
r & 0 \\
0 & 1
\end{bmatrix}
\]
- we can encode this information in the following data type

```c
class RigTForm{
    Cvec3 t;
    Quat q;
};
```
- this data will be always interpreted in the \(TR \) order above.

rbt * Cvec4

- you will write code for the product of a \text{RigTForm} \(A \) and a \text{Cvec4} \(c \), (where the last entry is 0/1).
- only translate if the fourth coordinate is 1.
- copy over the fourth coordinate from input to output.

rbt * rbt
let us look at the product of two such rigid body transforms.

\[
\begin{bmatrix}
 i & t_1 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_1 & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 i & t_2 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_2 & 0 \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & t_1 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_1 & r_{1t_2} \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_2 & 0 \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & t_1 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 i & r_{1}t_2 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_1 & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_2 & 0 \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & t_1 + r_{1}t_2 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r_{1r_2} & 0 \\
 0 & 1 \\
\end{bmatrix}
\]

the result is a new rigid transform with translation \(t_1 + r_{1}t_2\) and rotation \(r_{1r_2}\).

use this to code up the \(^*\) op.

inv operator

likewise for inverse

\[
\begin{bmatrix}
 i & t \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r & 0 \\
 0 & 1 \\
\end{bmatrix}
\]^{-1}
= \\
\begin{bmatrix}
 r & 0 \\
 0 & 1 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
 i & t \\
 0 & 1 \\
\end{bmatrix}^{-1}
= \\
\begin{bmatrix}
 r^{-1} & 0 \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 i & -t \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 r^{-1} & -(r^{-1}t) \\
 0 & 1 \\
\end{bmatrix}
= \\
\begin{bmatrix}
 i & -(r^{-1}t) \\
 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 r^{-1} & 0 \\
 0 & 1 \\
\end{bmatrix}
\]

the result is a new rigid body transform with translation \(-r^{-1}(t)\) and rotation \(r^{-1}\).

code

change \(\text{skyRbt}\) and \(\text{objectRbt[]}\) to be \(\text{RigTform}\) data type instead of \(\text{Matrix4}\).

in fact almost all of the C++ Matrix4’s will get replaced!

we provide \(\text{RigTForm makeXRotation(const double ang)}\)

more code

in GLSL, you will still use its matrix data type.

the only Matrix4s that will survive in your C++ code are the projMatrix, the MVM and the NMVM, which get sent to your shaders.

also, when we need to do object scaling, we cannot capture this in an RigTform, so this will also be a Matrix4 used in creating the MVM.

also, when we need to do object scaling, we cannot capture this in an RigTform, so this will also be a Matrix4 used in creating the MVM.

to communicate with the vertex shader using 4 by 4 matrices, we provide a procedure \(\text{Matrix4 quatToMatrix(quat q)}\) which turns quat into a 4 by 4 rotation matrix.

Then, the matrix for a rigid body transform can be computed as

```c
matrix4 rigTFormToMatrix(const RigTform& rbt){
    matrix4 T = makeTranslation(rbt.getTranslation());
    matrix4 R = quatToMatrix(rbt.getRotation());
    return T * R;
}
```
Thus, our drawing code starts with

```cpp
Matrix4 MVM = rigTFormToMatrix(inv(eyeRbt) * objRbt);
\ can right multiply scales here
Matrix4 NMVM = normalMatrix(MVM);
sendModelViewNormalMatrix(curSS, MVM, NMVM);
```

- we will not need any code that takes a Matrix4 and converts it to a Quat.
- scale will still represented by a Matrix4. (more later)

rbt Interpolation

- lets get back to discussing interpolation.
- given two frames, $\vec{o}_0 = \vec{w}^t O_0$ $\vec{o}_1 = \vec{w}^t O_1$
 - we will write it as matrices $O_0 = (O_0)^T_R(O_0)_R$ and $O_1 = (O_1)^T_R(O_1)_R$, but implement it using two RigTForm variables.
- interpolate between them by: linearly interpolating the two translation to get: T_α,
- slerp between the rotation quaternions to obtain the rotation R_α,
- set the interpolated RBT O_α to be $T_\alpha R_\alpha$.
- set $\vec{o}_\alpha = \vec{w}^t O_\alpha$.

behavior

- origin of the frame travels in a straight line with constant velocity,
 - read right to left
- the vector basis of the frame rotates with constant angular velocity about a fixed axis.
- physically natural if origin is at center of mass.
- has intrinsic description, so it is left invariant
- note: origin plays special role. if use different object frames for same geometry, we get different interpolation
 - not right invariant (see fig)