track and arc Balls

- how should we link mouse motion to object rotation.
- can do better than our current setup.
- want the feeling of pushing a sphere around
- want path invariance
- failure demo

setup

- we are moving an object with respect to cube-eye $\vec{a}' = \vec{w}'(O)_T(E)_R$
- The user clicks on the screen and drags the mouse. We wish to interpret this user motion as some rotation R that is applied to \vec{o}' with respect to \vec{a}'.

mental model

- imagine a sphere of some chosen radius that is centered at \hat{o}, the origin of \vec{o}'.
- user clicks on the screen at some pixel s_1 over the sphere in the image
 - we interpret this as the user selecting some 3D point \hat{p}_1 on the sphere.
- the user then moves the mouse to some other pixel s_2 over the sphere,
 - we interpret as a second point \hat{p}_2 on the sphere.
- define the unit direction vectors $\hat{v}_1, \hat{v}_2 : \text{normalize}(\vec{p}_1 - \hat{o})$ and $\text{normalize}(\vec{p}_2 - \hat{o})$ respectively.
- Define the angle $\phi = \arccos(\hat{v}_1 \cdot \hat{v}_2)$
- define the axis $\vec{k} = \text{normalize}(\hat{v}_1 \times \hat{v}_2)$.

the balls

- trackball: R is the rotation of ϕ degrees about the axis \vec{k}.
- arcball: R is the rotation of 2ϕ degrees about the axis \vec{k}.
- could be implemented with matrices or quaternions.
- arcball is very easy with quaternions
- rotation of 2ϕ degrees about the axis \vec{k} can be represented by the quaternion

 $\begin{bmatrix} \cos(\phi) \\ \sin(\phi) \vec{k} \end{bmatrix} = \begin{bmatrix} \hat{v}_1 \cdot \hat{v}_2 \\ \hat{v}_1 \times \hat{v}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \hat{v}_2 \end{bmatrix} \begin{bmatrix} 0 \\ -\hat{v}_1 \end{bmatrix}$

- where \hat{k}, \hat{v}_1 and \hat{v}_2 are the coordinate 3-vectors representing the vectors \vec{k}, \vec{v}_1 and \vec{v}_2 with respect to the frame \vec{a}'.
- start demo

Properties

- trackball feels like the user is simply grabbing a physical point on a sphere and dragging it around.
- but s_1 to s_2, followed by s_2 to s_3 is different from moving directly from s_1 to s_3
 - \hat{p}_1 will be rotated to \hat{p}_3, but the two results can differ by some “twist” about the axis $\hat{o} - \hat{p}_3$.
- arcball: the object appears to spin twice as fast as expected.
- but is path independent
path ind proof

- If we compose two arcball rotations, corresponding to motion from \(\tilde{p}_1 \) to \(\tilde{p}_2 \) followed by motion from \(\tilde{p}_2 \) to \(\tilde{p}_3 \),
 - we have \(\vec{t} = \vec{a}B \) (for some \(B \)).
- reading from right to left, we see that our transformations are \(\vec{a}B \rightarrow \vec{a}R_1B \rightarrow \vec{a}R_2R_1B \)
 - \(\vec{a}t \) doesn’t change since we are not changing the eye frame or the origin of the object frame.
- we get for \(R_2R_1 \):
 \[
 \begin{bmatrix}
 \hat{v}_2 \cdot \hat{v}_3 \\
 \hat{v}_2 \times \hat{v}_3
 \end{bmatrix}
 \begin{bmatrix}
 \hat{v}_1 \cdot \hat{v}_2 \\
 \hat{v}_1 \times \hat{v}_2
 \end{bmatrix}
 \]
 - which gives us
 \[
 \begin{bmatrix}
 0 \\
 \hat{v}_3
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 -\hat{v}_2
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 -\hat{v}_1
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 \hat{v}_3
 \end{bmatrix}
 \begin{bmatrix}
 0 \\
 -\hat{v}_1
 \end{bmatrix}
 =
 \begin{bmatrix}
 \hat{v}_1 \cdot \hat{v}_3 \\
 \hat{v}_1 \times \hat{v}_3
 \end{bmatrix}
 \]
 - which is exactly what we would have gotten had we moved directly from \(\tilde{p}_1 \) to \(\tilde{p}_3 \).

Implementation

- Trackball and Arcball can be directly implemented using either 4 by 4 matrices or quaternions to represent the transformation \(R \).
 - we will use quaternions, since we already have them
- the resulting quaternion depends only on vectors \(\hat{v} \)
 - so origin of frame is irrelevant
- so we can work in eye coordinates instead of cube-eye

getting eye coordinates

- One slightly tricky part is computing the coordinates of the point on the sphere corresponding to a selected pixel
 - this is geometric ray tracing (this is essentially ray-tracing, which we will covered later)
- hack: work in “window coordinates”.
 - x-axis is the horizontal axis of the screen, the y-axis is the vertical axis of the screen, and the z-axis is coming out of the screen.
 - think of the sphere’s center as simply sitting on the screen.
- Given the \((x, y)\) window coordinates of click the z coordinate on the sphere can be solved using \((x - c_x)^2 + (y - c_y)^2 + (z - 0)^2 - r^2 = 0, \)
 - \([c_x, c_y, 0]^t \) are the window coordinates of the center of the sphere.
 - \(r \) is the radius of the sphere measured in pixels.
 - and then normalize to get \(\hat{v} \).
- if outside of the sphere, then clamp to its silhoutte. and then normalize.
 - this can be done by just normalizing \([x - c_x, y - c_y, 0]^t \).

calculation

- need the center of the sphere
- so we give you code that transforms eye coords to screen coords.
Cvec2 getScreenSpaceCoord(const Cvec3& p,
 const Matrix4& projection,
 double frustNear, double frustFovY,
 int screenWidth, int screenHeight)

- we draw the ball using object coordinates, so we need to calculate its size in eye/object coordinates
- so we provide you with

 double getScreenToEyeScale(double z, double frustFovY, int screenHeight)

- in the ball drawer, you right multiply a scale matrix to the MVM.

translation

- in translation, we interpret mouse displacement (measured in pixels) to object displacement.
- may as well use the same screenToEyeScale factor so the object moves with the mouse.
- once the object is moved, or we change the eye we need to recalculate the scale
 - wait for click up.

moving skycam

- we will not change our roll-free skycam interface.