Visibility

- in the real world, opaque objects block light.
- we need to model this computationally
- one idea is to render back to front and use overwriting
 - this will have problem with visibility cycles
- we could explicitly store everything hit along a ray and then compute the closest
 - makes sence in a ray tracing setting, where we are working one pixel/ray at time, but not for OpenGL, where we are working one triangle at a time.

z-buffer

- we will use z-buffer
- triangles are drawn in any order
- each pixel in framebuffer stores “depth” value of closest geometry observed so far
- When a new triangle tries to set the color of a pixel, we first compare its depth to the value stored in the z-buffer. Only if the observed point in this triangle is closer do we overwrite the color and depth values of this pixel.
- this is done per-pixel, so no cycle problems.
- there are a optimizations where z-testing is done before the fragment shading is done

Other Uses of Visibility Calculations

- visibility to a light source is useful for shadows
 - we will talk about shadow mapping later
 - we will also discuss shadow calculations in a ray tracer
- Visibility computation can also be used to speed up the rendering process.
 - If we know that some object is occluded from the camera, then we don’t have to render the object in the first place.
 - can use a conservative test

Basic Mathematical Model

- for every point we define its \([x_n, y_n, z_n]^t\) coordinates using the following matrix expression.

\[
\begin{bmatrix}
 x_n w_n \\
 y_n w_n \\
 z_n w_n \\
 w_n
\end{bmatrix} =
\begin{bmatrix}
 x_c \\
 y_c \\
 z_c \\
 w_c
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & -c_x & 0 \\
 0 & s_y & -c_y & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_c \\
 y_c \\
 z_c \\
 1
\end{bmatrix}
\]

(1)

- we now also have the value \(z_n = \frac{-1}{z_e}\).
- Our plan is to use this \(z_n\) value to do depth comparisons in our z-buffer.

correct ordering

- Given two points \(\tilde{p}_1^1\) and \(\tilde{p}_2^2\) with eye coordinates \([x_1^1, y_1^1, z_1^1]^t\) and \([x_2^2, y_2^2, z_2^2]^t\).
- Suppose that they both are in front of the eye, i.e., \(z_1^e < 0\) and \(z_2^e < 0\).
- And suppose that \(\tilde{p}_1^1\) is closer to the eye than \(\tilde{p}_2^2\), that is \(z_2^e < z_1^e\).
- Then \(-\frac{1}{z_2} < -\frac{1}{z_1}\), meaning \(z_2^e < z_1^e\).

projective transform
• we can now think of the process of taking points given by eye coordinates to points given by normalized device coordinates as an honest to goodness 3D geometric transformation.
• This kind of transformation is generally neither linear nor affine, but is something called a 3D projective transformation.
• projective transformations preserve co-linearity and co-planarity of points
• we might have a divide-by-zero along some plane, where the map sends these points “out to infinity”.

$z_n \text{ lin interp is right}$

• coplanarity: for points on a fixed triangle, we will have $z_e = ax_e + by_e + c$, for some fixed a, b and c.
• preservation of coplanarity: for points on a fixed triangle, we will have $z_n = ax_n + by_n + c$, for some fixed (but different) a, b and c.
• Thus, the correct z_n value for a point can be computed using linear interpolation over the 2D image domain as long as we know its value at the three vertices of the triangle

$z_e \text{ interp}$

• linear interpolation of z_e values over the screen would produce wrong answer.
• (see fig):
 • even moves on the screen are not even moves on the triangle.
 • “red” should win for entire bottom half of image.
 • $z_e \neq ax_n + by_n + c$,
• suppose i really wanted to have z_e at each fragment, how could i get it?... more later.

Numerics (less important)

• there can be numerical difficulties when computing z_n. As z_e goes towards zero, the z_n value diverges off towards (positive) infinity.
• Conversely, points very far from the eye have z_n values very close to zero. The z_n of two such far away points may be indistinguishable in a finite precision representation, and thus the z-buffer will be ineffective in distinguishing which is closer to the eye.

solution: near/far (less important)

• solution: replacing the third row of the matrix with the more general row $[0, 0, \alpha, \beta]$.
• it is easy to verify that if the values α and β are both positive, then the z-ordering of points (assuming they all have negative z_e values) is preserved under the projective transform.
• To set α and β, we first select depth values n and f called the near and far values (both negative), such that our main region of interest in the scene is sandwiched between $z_e = n$ and $z_e = f$.
• Given these selections, we set $\alpha = \frac{f+n}{f-n}$ and $\beta = -\frac{2fn}{f-n}$.
• We can verify now that any point with $z_e = f$ maps to a point with $z_n = -1$ and that a point with $z_e = n$ maps to a point with $z_n = 1$

frustum

• this 3D projective transform maps a “frustum shape” to a “canonical cube shape”. (see 2d fig)
• Any point with z_e not in this [near..far] range is clipped away by OpenGL and ignored
• Equivalently, any point with z_n not in [-1..1] range is clipped away by OpenGL and ignored
 • So openGL does not even need to know about my camera matrix for this clipping. (more clipping soon)

Code
• In OpenGL, use of the z-buffer is turned on with a call to `glEnable(GL_DEPTH_TEST)`.

• We also need a call to `glDepthFunc(GL_GREATER)`, since we are using a right handed coordinate system where “closer to the eye” equals less-negative equals greater.

• In real life, you may see other conventions (for how to interpret n and f, some of the signs of the matrix, and the handedness of the ultimate z-test).