camera transforms

- until now we have considered all of our geometry in a 3d space
- ultimately everything ended up in eye coordinates with coordinates \([x_e, y_e, z_e, 1]^t\).
- we said that the camera is placed at the origin of the eye frame \(\mathbf{e}^d\), and that it is looking down the eye’s negative z-axis.
- this somehow produces a 2d image.
- we had a magic matrix which created \texttt{gl_Position}
- now we will study this step.

Pinhole Camera model

- see fig
- As light travels towards the film plane, most is blocked by an opaque surface placed at the \(z_e = 0\) plane.
- But we place a very small hole in the center of the surface, at the point with eye coordinates \([0,0,0,1]^t\).
- Only rays of light that pass through this point reach the film plane and have their intensity recorded on film. The image is recorded at a film plane placed at, say, \(z_e = 1\).
 - a physical camera needs a finite aperture and a lens, but we will ignore this.
- to avoid the image flip, we can mathematically model this with the film plane \textit{in front} of the pinhole, say at the \(z_e = -1\)
- if we hold up the photograph at the \(z_e = -1\) plane, and observe it with our own eye placed at the origin (see Figure), it will look to us just like the original scene would have.

Basic Mathematical Model

- let \(\tilde{p}\) have eye coordinates \([x_e, y_e, z_e]^t\)
- where does the ray from \(\tilde{p}\) to the origin hits the film plane?
- all points on the ray hit the same pixel.
- all points on the ray are all scales of each other
- Let us use eye coordinates \([x_n, y_n, -1]^t\) to specify the hit point on our film plane.
- all points on ray must be of the form : \(\alpha[x_n, y_n, -1]^t\)
- so \([x_e, y_e, z_e]^t\) is of this form with \(\alpha = -z_e\).
- \([x_e, y_e, z_e]^t = -z_e[x_n, y_n, -1]^t\)
- so
 \[
 \begin{align*}
 x_n &= \frac{x_e}{z_e} \quad (1) \\
 y_n &= \frac{y_e}{z_e} \quad (2)
 \end{align*}
 \]

in matrix form

- We can model this expression as a matrix operation as follows.
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 - & - & - & - \\
 0 & 0 & -1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x_e \\
 y_e \\
 z_e \\
 1
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_c \\
 y_c \\
 w_c
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_n w_n \\
 y_n w_n \\
 w_n
 \end{bmatrix}
 \quad (4)
 \]
- The raw output of the matrix multiply, \([x_e, y_e, -, w_c]^t\), are called the \textit{clip coordinates} of \(\tilde{p}\).
• $w_n = w_c$ is a new variable called the w-coordinate.

 – In such clip coordinates, the fourth entry of the coordinate 4-vector is not necessarily a zero or a one.

divide by w

• We say that $x_n w_n = x_c$ and $y_n w_n = y_c$.

• To extract x_n alone, we must perform the division $x_n = \frac{x_n w_n}{w_n}$

• this recovers our camera model

• Our output coordinates, with subscripts “n”, are called *normalized device coordinates* because they address points on the image in abstract image units without specific reference to numbers of pixels.

• we keep all of the image data in a canonical screen $-a \leq x_n \leq +a$, $-1 \leq y_n \leq +1$, where a is the aspect ratio, and ultimately map this onto a window on the screen.

 – This (at least vertically) is the model we used to describe 2D OpenGL visibility

• note that at this point, all points along the line will project to the same film position

• but in the real world, we only see the one in front.

• also note that even points along the line backwards behind the eye will also map to the same film position

• but in the real world, cameras do not see behind themselves.

• we will deal with these issues in due time.

scales

• By changing the entries in the projection matrix we can slightly alter the geometry of the camera transformation.

• we could push the film plane out to $z_e = n$, where n is some negative number (zoom lens)

• eye coordinates of points on the film are of the form: $[x_n, y_n, n]^t$

• points along its ray are of the form $\alpha [x_n, y_n, n]^t$

• so a point $[x_e, y_e, z_e]^t$ on the ray must satisfy $[x_e, y_e, z_e]^t = \frac{z_e}{n} [x_n, y_n, n]^t$

• and so

 \[
 x_n = \frac{x_n}{z_e} \\
 y_n = \frac{y_n}{z_e}
 \]

in matrix form

• We can get the same result in matrix form using

 \[
 \begin{bmatrix}
 x_n w_n \\
 y_n w_n \\
 w_n
 \end{bmatrix} =
 \begin{bmatrix}
 -n & 0 & 0 & 0 \\
 0 & -n & 0 & 0 \\
 0 & 0 & -1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x_e \\
 y_e \\
 z_e \\
 1
 \end{bmatrix}
 \]

• note this matrix is the same as

 \[
 \begin{bmatrix}
 -n & 0 & 0 & 0 \\
 0 & -n & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & -1 & 0
 \end{bmatrix}
 \]

2
• this has the same effect as starting with our original camera, scaling the image by $-n$, and cropping to the canonical square.

• so at this point, it we may as well think of the $[x_n, y_n]^t$ as coordinates resulting from a camera transform (and not the eye coordinates of points on a film plane).

 – so now we can simply think up some constraints on this transform and find the correct matrix.

fovY

• scale can be determined by vertical angular field of view of the desired camera.

• if we want our camera to have a field of view of θ degrees.

• we want any point with the maximal vertical angle to map to the boundary of the image.

• one such point has eye coordinates: $[0, \tan(\frac{\theta}{2}), -1, 1]^t$.

• we want the point with eye coordinates: $[0, \tan(\frac{\theta}{2}), -1, 1]^t$ maps to normalized device coordinates $[0, 1]^t$.

• so we can use the matrix

$$
\begin{bmatrix}
\frac{1}{\tan(\frac{\theta}{2})} & 0 & 0 & 0 \\
0 & \frac{1}{\tan(\frac{\theta}{2})} & 0 & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
$$

(5)

dealing with aspect ratio

• actually we want to use the canonical square as the screen model.

• Suppose the window is wider than it is high. In our camera transform, we need to squish things horizontally so a wider horizontal field of view fits into our retained canonical square.

• When the data is later mapped to the window, it will be stretched out correspondingly and will not appear distorted.

• Define a, the aspect ratio of a window, to be its width divided by its height (measured say in pixels).

• We can then set our projection matrix to be

$$
\begin{bmatrix}
\frac{1}{a \tan(\frac{\theta}{2})} & 0 & 0 & 0 \\
0 & \frac{1}{\tan(\frac{\theta}{2})} & 0 & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
$$

(6)

minFov

• so, for fixed θ, when the window is wide, we will keep more horizontal FOV, and when the window is tall, we will keep less horizontal FOV.

• but in asst1, we liked the behavior that didn’t crop any data as the aspect ration went above or below 1.

• so in our code, we specify a minFov, and check the aspect ratio, and alter the fovY when the window is tall

• see code in matrix and assn.

FOV issues

• to be a “window” onto the world, the FOV should match the angular extents of the window in the viewers field.

• this might give a too limited view onto the world.

• so we can increase it to see more.

• but this might give a somewhat unnatural look (demo).

motivate shifts
• look at the two street pics
 – what is the difference between the two cameras.
 – hint: if a geometric plane recedes from the film, it appears smaller.
• imagine we want to model the screen as a window, what should this camera look like
• also useful for tiled displays, stereo viewing on a single screen.

Shifts

• in these cases we wish to crop the image non-centrally
• this can be modeled as translating the NDC’s and then cropping centrally.

\[
\begin{bmatrix}
x_nw_n \\
y_nw_n \\
w_n \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & c_x \\
0 & 1 & 0 & c_y \\
0 & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 1 \\
\end{bmatrix} \begin{bmatrix}
x_e \\
y_e \\
z_e \\
1 \\
\end{bmatrix}
\]

• in the building example, \((c_x, c_y)\) might be \((0, -1/2)\).
 – shift down, then crop

frustum

• shifts are often specified by by first specifying a near plane \(z_e = n\).
• On this plane, a rectangle is specified with the eye coordinates of an axis aligned rectangle. (For non-distorted output, the aspect ratio of this rectangle should match that of the final window.)
 – using \(l, r, t, b\).

\[
\begin{bmatrix}
-\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & -\frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\] \hspace{1cm} (7)

• (fig)
• we also give you this code in matrix.h.

Context

• projection could be applied to every point in the scene
• in CG, we will apply it to the verts to position a triangle on the screen
• the rest of the triangle will then get filled in on the screen as we shall see.