1 Network Flow

The intuition behind network flow is to think of the edges as pipes and the weights on the edges as the capacity of the pipes per unit of time. The question we are trying to ask is: how many units of water can we send from the source to the sink per unit of time?

1.1 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm for finding the maximum flow in a graph is based on the idea of residual flows. We know that it is not correct to simply choose paths from s to t and fill them up until we cannot find any more paths from s to t with positive capacity remaining. This would be the greedy algorithm and is not correct.

Instead, what the Ford-Fulkerson algorithm keeps track of the residual graph, which starts off with the same vertices, edges, and capacities as the original graph. At each step of the algorithm, we find a path from s to t in the original graph and increase the flow along those edges in the original graph. Then, in the residual graph, we take the path from s to t that we just found, reverse it, and add edges along that path from t to s with the flow that we just found. We keep on doing this until there are no paths from s to t in the residual graph.

Exercise 1. Run Ford Fulkerson on the above graph to find the max flow between s and t.
1.2 Run-time

- Ford-Fulkerson has a run-time of $O(Ef^*)$ because each time we augment a path, we increase the total flow, so at worst the number of times we find an augmenting path is $O(f^*)$, where f^* is the value of the max flow. We can find an augmenting path in $O(E)$ with DFS.

- If we use BFS instead of finding our augmenting paths, then can be proved that the run-time is $O(V E^2)$, which does not depend on f^* anymore. This is commonly known as the Edmond-Karp algorithm, an implementation of Ford-Fulkerson.

1.3 Max Flow Min Cut

Recall: A cut is a partitioning of the vertices V into S and $V - S$. The weight of the cut is the sum of all the edge weights crossing S and $V - S$. In the context of max flow, the minimum cuts we refer to are minimum s-t cuts, which means that s and t must be separated in the cut.

- **Min Cut \geq Max Flow**

 Reason: If I gave you a particular cut, you know that all the units of flow must at one point pass between S and $V - S$. Thus, if the weight of the cut is c, then at most c units of flow could pass between s and t. The minimum $s - t$ cut is a bottleneck for the flow.

- **Min Cut \leq Max Flow**

 Reason: At the end of Ford-Fulkerson, I can look at all the nodes that can be reached from s and all the nodes that can reach t in the residual graph. There must not be a path from s to t or else the algorithm has not terminated. Therefore, this partitions the vertices into S, those that can be reached from s in this final graph, and $V - S$, the remaining vertices. This is some cut of the graph and the weight of the cut is the max flow, so in particular the minimum cut can be no heavier than this particular cut.

- **Therefore, the min s–t cut and max-flow are equal.**

If all capacities are integers, then there is an integer solution to max-flow (also via Ford-Fulkerson). There may also exist non-integer solutions. Note that the value of the max flow is unique, but the specific amounts of flow on the edges are not.

1.4 Linear Programming

We can easily formulate network flow as a linear program. We define the variables f_{uv} to be the amount of flow sent along the edge (u, v). We are trying to maximize the amount of flow coming out of the sink (or going into the source) subject to the following conditions:

- **Capacity:** $f_{uv} \leq c_{uv}$ where c_{uv} is the capacity of the edge (u, v).

- **Conservation:** For every vertex w besides $w = s$ and $w = t$, we must have that

$$\sum_{(u,w)} f_{uw} - \sum_{(w,v)} f_{wv} = 0$$

- **Nonnegativity:** $f_{uv} \geq 0$
Exercise 2. In the transportation problem, our goal is to figure out how to ship commodities between a bunch of sources and sinks in the cheapest possible way. We are given a bipartite graph where every vertex is either a source \{s_1, s_2, \ldots, s_k\} or a sink \{t_1, t_2, \ldots, t_\ell\}. Edges of the graph only go between \(s_i\) and \(t_j\). For each source \(s_i\), there is an associated weight \(a_i\) pounds of the commodity that vertex can supply, and for each sink \(t_j\), there is an weight \(b_j\) pounds of the commodity that vertex demands. For each edge \((s_i, t_j)\) there is an associated cost \(c_{ij} \geq 0\), which represents the cost per pound of shipping this commodity along the route from \(s_i\) to \(t_j\). The goal is to satisfy all the \(t_j\)'s demand for this good in the cheapest possible way.

(a) Show how to formulate this question as a linear program.

(b) Suppose some of the roads from \(s_i\) to \(t_j\) are not so well paved, so there is also a capacity \(C_{ij}\) of goods that can even travel between \(s_i\) and \(s_j\). How would you modify your linear program to change this?

2 Applications of Flow Problems

Exercise 3. Suppose you are given a \(u \times v\) matrix \(A\) with real entries. Find an efficient algorithm to either construct a \(u \times v\) matrix \(B\) with integer entries such that the sum of the entries in each row/column of \(A\) is equal to the sum of the entries of each row/column of \(B\), or output that this is impossible.

Here’s an example:

\[
A = \begin{bmatrix} 0.8 & 0.8 & 0.4 \\ 0.2 & 0.2 & 0.6 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]
Exercise 4. (Kleinberg and Tardos Chapter 7)

Network flow issues come up in dealing with natural disasters and other crises, since major unexpected events often require the movement and evacuation of large numbers of people in a short amount of time.

Consider the following scenario. Due to large-scale flooding in a region, paramedics have identified a set of n injured people distributed across the region who need to be rushed to hospitals. There are k hospitals in the region, and each of the n people needs to be brought to a hospital that is within a half-hour’s driving time of their current location (so different people will have different options for hospitals, depending on where they are right now).

At the same time, one doesn’t want to overload any one of the hospitals by sending too many patients its way. The paramedics are in touch by cell phone, and they want to collectively work out whether they can choose a hospital for each of the injured people in such a way that the load on the hospitals is balanced: Each hospital receives at most $\lceil n/k \rceil$ people.

Give a polynomial-time algorithm that takes the given information about the people’s locations and determines whether this is possible.
3 Two Player Games

A two player game is usually denoted by a matrix of real values. Usually, the numbers represent payoffs to the row player. If the matrix has \(n \) rows and \(m \) columns, then the row player has \(n \) different possible moves and the column player has \(m \) different moves. At each round, both players choose a move and the corresponding value is the payoff to the row player. The question we want to ask is: what is each player’s best strategy?

Main Ideas:

- Our strategy must be randomized. If it is deterministic, then if our opponent found out our algorithm for determining the next move, they could always play the move that best counteracts our move at each iteration.

- Given a particular random strategy \((y_1 \ldots y_n)\) for the row player, we know that for each move \(y_i\), there exists a move from the column player that is best and should always be played. This is called a pure strategy for the column player. \textit{Given my move proportions, the worst case scenario for the row player occurs when the column player plays one of his \(m \) pure strategies.}

- For the row player, we analyze the \textbf{best worst possible strategy}, i.e the strategy whose worst possible outcome is as best as possible. For the column player, we analyze the opposite – the \textbf{worst possible best strategy} for the row player. These two linear programs are \textit{dual} to each other.

Exercise 5. Consider the following two player game, where the entries denote the payoffs of the row player:

\[
\begin{pmatrix}
3 & -1 & 2 \\
1 & 2 & -2
\end{pmatrix}
\]

Write the row player’s maximization problem as an LP. Then write the dual LP, which is the column player’s minimization problem.

Exercise 6. Now find the equilibrium of this game.