1 Problem 1

Run the Extended Euclidean algorithm for \(a = 111\) and \(b = 75\) to find their \(gcd\), \(d\), and find integers \(x\) and \(y\) such that \(ax + by = d\).

Solution: Running the extended Euclidean algorithm, we get:

\[
\begin{array}{c|c|c|c|c}
 a & b & k & x & y \\
 111 & 75 & 1 & -2 & 3 \\
 75 & 36 & 2 & 1 & -2 \\
 36 & 3 & 12 & 0 & 1 \\
 3 & & & 1 & 0 \\
\end{array}
\]

Therefore, \(GCD(a, b) = 3\), \(x = -2\), \(y = 3\). We can verify that \(111 \cdot (-2) + 75 \cdot 3 = 3\).

2 Problem 2

(a) Prove that RSA is multiplicative: if \(C_1\) is the encryption of \(M_1\) and \(C_2\) is the encryption of \(M_2\), then \(C_1C_2\) is the encryption of \(M_1M_2\).

(b) Let \((n, e)\) be a public key of RSA. Show that if we have an efficient algorithm \(A\) which decrypts 1 percent of the messages, we can build an efficient randomized algorithm that decrypts every message with probability > 0.9.

Solution:

(a) Follows from definitions: if \(C_1\) is the encryption of \(M_1\), then \(C_1 = M_1^e \mod n\); then \(C_1C_2 = M_1^e \cdot M_2^e \mod n\).

(b) Suppose that \(A\) is a procedure that can decrypt 1/100 of the messages that Alice encrypts. We show a procedure that decrypts every message with high probability: Let \(c(M_1)\) be an encrypted message and we want to compute \(M_1\). We choose randomly a message \(M_2\) and compute \(gcd(M_2, n)\) (recall that \(n\) is public). If it is not 1, then we have succeeded to factor \(n\) and we can decrypt every message. Otherwise look at the message \(M = M_1M_2\). Since \(M_2\) is chosen uniformly from all the messages that have \(gcd(M_2, n) = 1\), and since \(gcd(M_2, n) = 1\), \(M\) is uniformly distributed over the space of all messages.
Therefore with probability 1/100 A can decrypt \(c(M) \). We now use the fact that \(c(M) = c(M_1)c(M_2) \). We compute \(c(M_2) \) and multiply it by \(c(M_1) \) we now have \(c(M) \). We now give \(c(M) \) to A. Suppose A computes \(M \) for us, so we divide it by \(M_2 \) and retrieve \(M_1 \). We have shown that with probability 1/100 we have succeeded to decrypt every message. Then, we just need to find a \(k \) such that \((1 - 0.01)^k < 0.1 \). The smallest such \(k \) is 230.

3 Problem 3

(a) We are filling a knapsack with items. The knapsack has a maximum weight capacity of \(W \). Each item \(i \) is associated with a value \(v_i \) and weight \(w_i \). We can split any item \(i \) into a fractional piece before putting the fractional piece into the bag (e.g. we can take \(\frac{1}{2} \) of item 1). There are \(n \) total items. Describe a linear program to find the maximum value knapsack we can fill.

(b) Now suppose the knapsack is shared between \(k \) different people who have different opinions about the values of items. For person \(j \) (\(j = 1, 2, ..., k \)), the value of item \(i \) is \(v^j_i \geq 0 \). For each way of putting items into the knapsack, different people will have different evaluations for the knapsack (\(p \) fraction of item \(i \) will contribute \(p \cdot v^j_i \) to the evaluation of person \(j \)). We want to be fair to all the people, so we will define the actual value of the knapsack to be the minimum evaluation out of the \(k \) people. Write a linear program that finds the maximum possible value of a knapsack.

Solution:

(a) Let \(p_i \) be the fraction of item \(i \) we insert into the knapsack, \(w_i \) and \(v_i \) be the total weight and valuation of the item respectively. Then:

\[
\max \sum_{i=1}^{n} p_i v_i \\
\text{s.t.} \sum_{i=1}^{n} p_i w_i \leq W \\
0 \leq p_i \leq 1
\]

(b) Similar to above, except now we define the utility of person \(j \) to be \(u_j = \sum_{i=1}^{n} p_i v^j_i \). Then:

\[
\max u \\
\text{s.t.} \ u \leq u_j \forall j \\
\ u_j = \sum_{i=1}^{n} p_i v^j_i \\
\sum_{i=1}^{n} p_i w_i \leq W \\
0 \leq p_i \leq 1
\]