1 CS124 Section 7: Amortization and Hashing

Ted Pyne

Problem 1.1. Consider the sequence of operations:

\text{insert}(2), \text{insert}(3), \text{insert}(1), \text{deletemin}(), \text{insert}(5), \text{insert}(0), \text{deletemin}(), \text{insert}(6)

What does the data structure look like?

Proof. We track \(p, A \) and the HoH after each operation:

<table>
<thead>
<tr>
<th>t</th>
<th>p</th>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>[2]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>[2,3]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td>[2,3]</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>[5]</td>
<td>[2,3]</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>[5,0]</td>
<td>[2,3]</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td>[2,3],[5]</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>[6]</td>
<td>[2,3],[5]</td>
</tr>
</tbody>
</table>

Problem 1.2. Suppose we want to implement a dynamically sized array. Let the current number of elements be \(k \), and let \(m \) be the size of the current array. As additional appendLast() and removeLast() operations occur:

1. If \(k = m \), allocate a new array of size 2\(m \) and move all elements over.
2. If \(k = m/4 \), allocate a new array of size \(m/2 \) and move all elements over.

Assuming moving a single element takes \(O(1) \) time, show this data structure has \(O(1) \) amortized runtime for appendLast() and removeLast() operations.

Proof. We define a potential function there \(p \) is equal at all times to the number of appendLast or removeLast operations since the last resize. For each appendLast or removeLast operation that does not trigger a resize, implement the operation and increase \(p \) by 4. Both the real work and \(\Delta p \) are \(O(1) \).

For an operation that triggers a resize, we claim \(p \geq m/2 \). Let \(m \) be the current size of the array. When \(p \) was last set to zero, we had \(|k - m| \geq \min(m - m/2, m/2 - m/4) = m/4 \) by the description of the algorithm. Since moving the array takes \(m \) work, by setting \(p \) to zero we obtain an amortized resize runtime of

\[
m - \Delta p + O(1) = m - 4(m/4) + O(1) = O(1)
\]

As desired.

Problem 1.3. Assume \(u = \{0,1\}^s \) and \(m = \{0,1\}^k \) with + and * defined bitwise. Then let \(M \) be the set of all matrices with entries in \(\{0,1\} \) with \(k \) rows and \(s \) columns. For all \(A \in M \), define

\[
h_A(x) = Ax.
\]

Show \(\{h_A : A \in M\} \) is a hash family.
Proof. We wish to show that for all \(x, y \in \{0, 1\}^s\) where \(x \neq y\) that

\[
\Pr_h[h(x) = h(y)] = 1/m.
\]

By rearranging, this is equivalent to showing for \(x \neq y\):

\[
\Pr_{A \leftarrow M}[A(x - y) = 0] = 1/m.
\]

To show this, we remark that since \(x \neq y\) there is at least one bit, WLOG the first, where \(x - y\) is nonzero. Then for every \(A\) let \(A_i\) be the \(i\)th column of \(A\). We have:

\[
A(x - y) = A_1 + \sum_{i=2}^{s} A_i(x - y)_i
\]

Treating \(A_2, \ldots, A_s\) as fixed, we have that \(A(x - y) = A_1 + v\) where \(v\) is some fixed vector. But \(A_1\) is exactly uniform over \(\{0, 1\}^k\), and the distribution of a uniform vector over \(\mathbb{F}_2\) plus a constant vector is uniform, so \(A(x - y)\) is uniformly distributed over \(\{0, 1\}^k\) and we have the desired result. \(\square\)