Binary Trees and Huffman Encoding

Computer Science S-111
Harvard University
David G. Sullivan, Ph.D.

Motivation: Implementing a Dictionary

- A data dictionary is a collection of data with two main operations:
 - search for an item (and possibly delete it)
 - insert a new item

- If we use a sorted list to implement it, efficiency = $O(n)$.

<table>
<thead>
<tr>
<th>data structure</th>
<th>searching for an item</th>
<th>inserting an item</th>
</tr>
</thead>
<tbody>
<tr>
<td>a list implemented using an array</td>
<td>$O(\log n)$ using binary search</td>
<td>$O(n)$ because we need to shift items over</td>
</tr>
<tr>
<td>a list implemented using a linked list</td>
<td>$O(n)$ using linear search (binary search in a linked list is $O(n \log n)$)</td>
<td>$O(n)$ ($O(1)$ to do the actual insertion, but $O(n)$ to find where it belongs)</td>
</tr>
</tbody>
</table>

- In the next few lectures, we’ll look at how we can use a tree for a data dictionary, and we’ll try to get better efficiency.
- We’ll also look at other applications of trees.
What Is a Tree?

- A tree consists of:
 - a set of nodes
 - a set of edges, each of which connects a pair of nodes

- Each node may have one or more data items.
 - each data item consists of one or more fields
 - key field = the field used when searching for a data item
 - data items with the same key are referred to as duplicates

- The node at the "top" of the tree is called the root of the tree.

Relationships Between Nodes

- If a node N is connected to nodes directly below it in the tree:
 - N is referred to as their parent
 - they are referred to as its children.
 - example: node 5 is the parent of nodes 10, 11, and 12

- Each node is the child of at most one parent.

- Nodes with the same parent are siblings.
A node’s *ancestors* are its parent, its parent’s parent, etc.
- example: node 9’s ancestors are 3 and 1

A node’s *descendants* are its children, their children, etc.
- example: node 1’s descendants are *all* of the other nodes

Types of Nodes

- A *leaf node* is a node without children.
- An *interior node* is a node with one or more children.
A Tree is a Recursive Data Structure

- Each node in the tree is the root of a smaller tree!
 - refer to such trees as *subtrees* to distinguish them from the tree as a whole
 - example: node 2 is the root of the subtree circled above
 - example: node 6 is the root of a subtree with only one node
- We’ll see that tree algorithms often lend themselves to recursive implementations.

Path, Depth, Level, and Height

- There is exactly one *path* (one sequence of edges) connecting each node to the root.
- *depth* of a node = # of edges on the path from it to the root
- Nodes with the same depth form a *level* of the tree.
- The *height* of a tree is the maximum depth of its nodes.
 - example: the tree above has a height of 2
Binary Trees

- In a binary tree, nodes have at most two children.
 - distinguish between them using the direction left or right

- Example:
 ![Binary Tree Diagram]

- Recursive definition: a binary tree is either:
 1) empty, or
 2) a node (the root of the tree) that has:
 - one or more pieces of data (the key, and possibly others)
 - a left subtree, which is itself a binary tree
 - a right subtree, which is itself a binary tree

Which of the following is/are not true?

A. This tree has a height of 4.
B. There are 3 leaf nodes.
C. The 38 node is the right child of the 32 node.
D. The 12 node has 3 children.
E. more than one of the above are not true (which ones?)
Representing a Binary Tree Using Linked Nodes

```java
public class LinkedTree {
    private class Node {
        private int key;      // limit ourselves to int keys
        private LLList data;  // list of data for that key
        private Node left;    // reference to left child
        private Node right;   // reference to right child
    }
    private Node root;
}
```

The diagram illustrates a binary tree with nodes labeled with integers: 26, 12, 32, 4, 18, 38, and 7. Each node has a `key` field and references to its `left` and `right` children. The `data` field is not shown in the diagram.
Traversing a Binary Tree

• Traversing a tree involves visiting all of the nodes in the tree.
 • visiting a node = processing its data in some way
 • example: print the key

• We'll look at four types of traversals.
 • each visits the nodes in a different order

• To understand traversals, it helps to remember that every node is the root of a subtree.

1: Preorder Traversal

• preorder traversal of the tree whose root is N:
 1) visit the root, N
 2) recursively perform a preorder traversal of N’s left subtree
 3) recursively perform a preorder traversal of N’s right subtree

• preorder because a node is visited before its subtrees

• The root of the tree as a whole is visited first.
Implementing Preorder Traversal

```
public class LinkedTree {
    private Node root;
    public void preorderPrint() {
        if (root != null) {
            preorderPrintTree(root);
            System.out.println();
        }
    }
    private static void preorderPrintTree(Node root) {
        System.out.print(root.key + " ");
        if (root.left != null) {
            preorderPrintTree(root.left);
        }
        if (root.right != null) {
            preorderPrintTree(root.right);
        }
    }
}
```

- `preorderPrintTree()` is a static, recursive method that takes the root of the tree/subtree that you want to print.
- `preorderPrint()` is a non-static "wrapper" method that makes the initial call. It passes in the root of the entire tree.

Tracing Preorder Traversal

```
void preorderPrintTree(Node root) {
    System.out.print(root.key + " ");
    if (root.left != null) {
        preorderPrintTree(root.left);
    }
    if (root.right != null) {
        preorderPrintTree(root.right);
    }
}
```

order in which nodes are visited:
- base case, since neither recursive call is made!
- we go back up the tree by returning!
- Not always the same as the root of the entire tree.
Using Recursion for Traversals

```java
void preorderPrintTree(Node root) {
    System.out.print(root.key + " ");
    if (root.left != null) {
        preorderPrintTree(root.left);
    }
    if (root.right != null) {
        preorderPrintTree(root.right);
    }
}
```

• Using recursion allows us to easily go back up the tree.
• Using a loop would be harder. Why?

2: Postorder Traversal

• postorder traversal of the tree whose root is N:
 1) recursively perform a postorder traversal of N's left subtree
 2) recursively perform a postorder traversal of N's right subtree
 3) visit the root, N

• postorder because a node is visited after its subtrees
• The root of the tree as a whole is visited last.
Implementing Postorder Traversal

public class LinkedTree {
 private Node root;
 public void postorderPrint() {
 if (root != null) {
 postorderPrintTree(root);
 }
 System.out.println();
 }
 private static void postorderPrintTree(Node root) {
 if (root.left != null) {
 postorderPrintTree(root.left);
 }
 if (root.right != null) {
 postorderPrintTree(root.right);
 }
 System.out.print(root.key + " ");
 }
 • Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

void postorderPrintTree(Node root) {
 if (root.left != null) {
 postorderPrintTree(root.left);
 }
 if (root.right != null) {
 postorderPrintTree(root.right);
 }
 System.out.print(root.key + " ");
}
3: Inorder Traversal

- inorder traversal of the tree whose root is N:
 1) recursively perform an inorder traversal of N's left subtree
 2) visit the root, N
 3) recursively perform an inorder traversal of N's right subtree

- The root of the tree as a whole is visited between its subtrees.
- We'll see later why this is called inorder traversal!

```
public class LinkedTree {
    private Node root;
    public void inorderPrint() {
        if (root != null) {
            inorderPrintTree(root);
        }
    System.out.println();
    }

    private static void inorderPrintTree(Node root) {
        if (root.left != null) {
            inorderPrintTree(root.left);
        }
    System.out.print(root.key + " ");
        if (root.right != null) {
            inorderPrintTree(root.right);
        }
    }
}
```

- Note that the root is printed between the two recursive calls.
Tracing Inorder Traversal

```java
void inorderPrintTree(Node root) {
    if (root.left != null) {
        inorderPrintTree(root.left);
    }
    System.out.print(root.key + " ");
    if (root.right != null) {
        inorderPrintTree(root.right);
    }
}
```

Level-Order Traversal

- Visit the nodes one level at a time, from top to bottom and left to right.
- Level-order traversal of the tree above: 7 9 5 8 6 2 4
- We can implement this type of traversal using a queue.
Tree-Traversals Summary

- preorder: root, left subtree, right subtree
- postorder: left subtree, right subtree, root
- inorder: left subtree, root, right subtree
- level-order: top to bottom, left to right

• Perform each type of traversal on the tree below:

```
         9
        / \   \
       15   7
      /     / \
     23    10 5
    /   \   /   \
   12    8 35   26
  /   \   /      \
 6     5 2        
```

Tree Traversal Puzzle

• preorder traversal: A M P K L D H T
• inorder traversal: P M L K A H T D
• Draw the tree!

• What's one fact that we can easily determine from one of the traversals?
Using a Binary Tree for an Algebraic Expression

- We'll restrict ourselves to fully parenthesized expressions using the following binary operators: +, -, *, /

- Example: \((a + (3 * c)) - (d / 2)\)

- Leaf nodes are variables or constants.
- Interior nodes are operators.
 - their children are their operands

Traversing an Algebraic-Expression Tree

- Inorder gives conventional algebraic notation.
 - print '(' before the recursive call on the left subtree
 - print ')' after the recursive call on the right subtree
 - for tree at right: \(((a + (b * c)) - (d / e))\)

- Preorder gives functional notation.
 - print '('s and ')'s as for inorder, and commas after the recursive call on the left subtree
 - for tree above: \(\text{subtr}\(\text{add}(a, \text{mult}(b, c)), \text{divide}(d, e)\)\)

- Postorder gives the order in which the computation must be carried out on a stack/RPN calculator.
 - for tree above: \(\text{push} a, \text{push} b, \text{push} c, \text{multiply}, \text{add}, \ldots\)
Fixed-Length Character Encodings

- A character encoding maps each character to a number.

- Computers usually use fixed-length character encodings.
 - ASCII - 8 bits per character
 - example: "bat" is stored in a text file as the following sequence of bits:
 01100010 01100001 01110100
 - Unicode - 16 bits per character
 - (allows for foreign-language characters; ASCII is a subset)

- Fixed-length encodings are simple, because:
 - all encodings have the same length
 - a given character always has the same encoding

<table>
<thead>
<tr>
<th>char</th>
<th>dec</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>97</td>
<td>01100001</td>
</tr>
<tr>
<td>'b'</td>
<td>98</td>
<td>01100010</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>'t'</td>
<td>116</td>
<td>01110100</td>
</tr>
</tbody>
</table>

A Problem with Fixed-Length Encodings

- They tend to waste space.

- Example: an English newspaper article with only:
 - upper and lower-case letters (52 characters)
 - spaces and newlines (2 characters)
 - common punctuation (approx. 10 characters)
 - total of 64 unique characters \(\Rightarrow \) only need ___ bits

- We could gain even more space if we:
 - gave the most common letters shorter encodings (3 or 4 bits)
 - gave less frequent letters longer encodings (> 6 bits)
Variable-Length Character Encodings

- Variable-length encodings *compress* a text file by:
 - using encodings of different lengths for different characters
 - assigning shorter encodings to frequently occurring characters

- Example: if we had only four characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>01</td>
</tr>
<tr>
<td>o</td>
<td>100</td>
</tr>
<tr>
<td>s</td>
<td>111</td>
</tr>
<tr>
<td>t</td>
<td>00</td>
</tr>
</tbody>
</table>

"test" would be encoded as

00 01 111 00 \(\rightarrow\) 000111100

- Challenge: when reading a document, how do we determine the boundaries between characters?
 - how do we know how many bits the next character has?

- One requirement: no character's encoding can be the prefix of another character's encoding (e.g., couldn't have 00 and 001).

Huffman Encoding

- One type of variable-length encoding

- Based on the actual character frequencies in a given document
 - different documents have different encodings

- Huffman encoding uses a binary tree:
 - to determine the encoding of each character
 - to *decode* / *decompress* an encoded file
 - putting it back into ASCII
Huffman Trees

- Example for a text with only six characters:

```
0 1
0 1
0 1
0 1
```

```
t e o i a s
```

- Left branches are labeled with a 0, right branches with a 1.
- Leaf nodes are characters.
- To get a character's encoding, follow the path from the root to its leaf node.
 - example: i = ?

Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes containing (character, frequency) pairs for each character in the text – sorted by frequency.

```
'0' 11
'i' 23
'a' 25
's' 26
't' 27
'e' 40
```

3) Remove and "merge" the nodes with the two lowest frequencies, forming a new node that is their parent.
 - left child = lowest frequency node
 - right child = the other node
 - frequency of parent = sum of the frequencies of its children
 - in this case, 11 + 23 = 34
Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

```
<table>
<thead>
<tr>
<th>Node</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>25</td>
</tr>
<tr>
<td>'s'</td>
<td>26</td>
</tr>
<tr>
<td>'t'</td>
<td>27</td>
</tr>
<tr>
<td>'e'</td>
<td>40</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'i'</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>
```

5) Repeat steps 3 and 4 until there is only a single node in the list, which will be the root of the Huffman tree.

Completing the Huffman Tree Example I

- Merge the two remaining nodes with the lowest frequencies:
Completing the Huffman Tree Example II

- Merge the next two nodes:

```
    't'  27
      /  \
    'e'  40
      /  \
   'o'  11 'i'  23
```

```
    't'  40
      /  \
    'e'  51
      /  \
   'a'  25 's'  26
```

```
    'e'  40
      /  \
    't'  51
      /  \
   'a'  25 's'  26
```

```
    'o'  11 'i'  23
```

- Merge again:

```
    'o'  40
      /  \
    'e'  51
      /  \
   'a'  25 's'  26
```

```
    'o'  61
      /  \
    'e'  91
      /  \
   'a'  25 's'  26
```

```
    'o'  11 'i'  23
```
Completing the Huffman Tree Example IV

• The next merge creates the final tree:

- Characters that appear more frequently end up higher in the tree, and thus their encodings are shorter.

The Shape of the Huffman Tree

• The tree on the last slide is fairly symmetric.
• This won't always be the case!
 • depends on the character frequencies
• For example, changing the frequency of 'o' from 11 to 21 would produce the tree shown below:

- This is the tree that we'll use in the remaining slides.
Huffman Encoding: Compressing a File

1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.
 • include the character frequencies so the tree can be rebuilt
 when the file is decompressed

3) Traverse the Huffman tree to create a table containing the
 encoding of each character:

4) Read through the input file a second time, and write the
 Huffman code for each character to the output file.

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:
 when you read a bit of 1, go to the right child
 when you read a bit of 0, go to the left child
 when you reach a leaf node, record the character,
 return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
 determining the character boundaries!

example: 10111110000111100
first character = i
What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
 - when you read a bit of 1, go to the right child
 - when you read a bit of 0, go to the left child
 - when you reach a leaf node, record the character,
 return to the root, and continue reading bits

 The tree allows us to easily overcome the challenge of determining the character boundaries!

example: 10111110000111100
 first character = i (101)

```
0 1
  0 1
    0 1
      o i a s
```
Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
 when you read a bit of 1, go to the right child
 when you read a bit of 0, go to the left child
 when you reach a leaf node, record the character,
 return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of determining the character boundaries!

example: 101111110000111100
 101 = right,left,right = i
 111 = right,right,right= s
 110 = right,right,left = a
 00 = left,left = t
 01 = left,right = e
 111 = right,right,right= s
 00 = left,left = t